Fas (APO-1/CD95), a member of the tumor necrosis factor receptor (TNFR)/nerve growth factor receptor (NGFR) superfamily, is a cell-surface molecule that induces apoptosis upon activation. Fas-associated phosphatase-1 (FAP-1) is a 250-kDa protein tyrosine phosphatase (PTP) that is associated with the negative regulatory domain of Fas (C-terminal 15 amino acids). Human tumor cell lines become resistant to Fas-mediated apoptosis when transfected with FAP-1, indicating that FAP-1 functions as a negative regulator in Fas-mediated death signaling. However, the mechanisms by which FAP-1 inhibits apoptosis are still unclear. In order to determine how FAP-1 affects the signaling mediated by Fas, we set out to identify substrates of FAP-1. Toward this end, we prepared synthetic proteins with either the catalytic domain of FAP-1 (C-terminal 399 amino acids) or its inactive form (Cys2408-->Ser) fused to glutathione-S-transferase (GST). Using an in vitro dephosphorylation reaction, we found that FAP-1 dephosphorylates IkappaBalpha. Furthermore, a substrate trapping mutant was found to bind tyrosine-phosphorylated IkappaBalpha. Taken together, our data confirm that IkappaBalpha is a substrate of FAP-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1327.2000.01818.x | DOI Listing |
Int Immunopharmacol
December 2024
Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China. Electronic address:
Background: Lipopolysaccharide (LPS) triggers the activation of nuclear factor kappa B (NF-κB) by interacting with Toll-like receptor 4 (TLR4), leading to the production of various proinflammatory enzymes and cytokines that are crucial in the development of acute lung injury (ALI). Mitoxantrone (MTX) has been demonstrated to mitigate the inflammatory response caused by LPS; however, its precise function in the context of ALI is not fully comprehended.
Purpose: This study aimed to investigate the inhibitory effects and underlying mechanisms of MTX against LPS-induced ALI.
Chin Med
November 2024
National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Cell Rep
October 2024
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China. Electronic address:
Immunopharmacol Immunotoxicol
December 2024
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
Isoorientin (ISO), a flavone C-glycoside, is a glycogen synthase kinase 3β (GSK3β) substrate-competitive inhibitor. ISO has potential in treatment of Alzheimer's disease (AD). An excessive activation of GSK3β can lead to neuroinflammation causing neuronal damage.
View Article and Find Full Text PDFNat Commun
September 2024
Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!