Background: Gemcitabine (Gemzar) and 5-fluorouracil (5-FU) plus folinic acid (FA) both have proven activity in the treatment of patients with advanced pancreatic cancer. The present study was initiated to investigate the efficacy of gemcitabine in combination with 5-FU-FA.
Patients And Methods: Thirty-eight patients, median age 60 years (range 34-70) with inoperable, stage IV, pancreatic cancer were enrolled into the study and treated on an outpatient basis. All except one patient received at least one cycle of treatment with gemcitabine (1000 mg/m2), followed by FA (200 mg/m2) and 5-FU (750 mg/m2) administered as a 24-hour continuous infusion on days 1, 8, 15 and 22 of a 42-day schedule. No patient had received prior chemotherapy or radiotherapy. All 38 patients were assessed for efficacy, toxicity and time to progressive disease.
Results: Two patients (5%), achieved a partial response and thirty-four patients (89%) achieved stable disease. There were two early deaths (< or = 4 weeks). The median time to progression was 7.1 months (range 0.4-18.1+; 95% confidence interval (95% CI): 5.3-7.9 months). Three patients had a progression-free interval of greater than 12 months and 12 of 38 patients (32%) survived longer than 12 months. The median overall survival was 9.3 months (range 0.5-26.5; 95% CI: 7.3-13.0 months). The incidence of grade 3 and 4 toxicities was low.
Conclusions: The combination of gemcitabine and 5-FU-FA is active and well tolerated and seems to offer an improvement in progression-free interval over both gemcitabine monotherapy and 5-FU-FA therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1008364018881 | DOI Listing |
Phys Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).
Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.
Ann Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
World J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!