When the degree of closure of the paper machine wet end waters increases, wet end problems also become more difficult to control without specific and selective on-line measurements. The need to measure the concentrations of individual compounds in order to explain wet end phenomena is growing. This study was performed to set up a CE system to a paper machine and to determine soluble inorganic and organic ions in different locations of pulp and paper process waters with real time analyses by two on-line CE methods. A reconstructed commercial CE apparatus was connected to a papermaking machine via an apparatus, which was a combined sampling and sample pretreatment instrument, the role of which was to filter and dilute the samples before on-line determination by CE. The on-line procedures were optimized for simultaneous determination of anions as chloride, sulfate, oxalate, formate and acetate and for determination of cations as potassium, calcium, sodium, magnesium and traces of aluminium. The quantification was performed with external standard methods using the programs available in the commercial CE instrument. The concentrations of the ions were transferred by using a computerized transfer algorithm exporting the results from the analysis instrument to the process control unit. The developed on-line procedures were tested three times in paper and paperboard mills for 1 month at a time. Correlations were observed between the CE results and changes in the processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(00)00586-0 | DOI Listing |
J Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:
In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.
View Article and Find Full Text PDFMolecules
January 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile.
This study aims to provide evidence that when testing cellulose paper modified with copper particles (CuPs), the particle size and the analysis method influence the antimicrobial activity observed by this material. Commercial CuPs of nanometric size (2.7 nm, CuNPs) and micrometric size (2.
View Article and Find Full Text PDFMicroorganisms
January 2025
Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.
Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!