Cortical motor areas and their properties: implications for neuroprosthetics.

Prog Brain Res

Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160-7336, USA.

Published: January 2001

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0079-6123(00)28013-8DOI Listing

Publication Analysis

Top Keywords

cortical motor
4
motor areas
4
areas properties
4
properties implications
4
implications neuroprosthetics
4
cortical
1
areas
1
properties
1
implications
1
neuroprosthetics
1

Similar Publications

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.

View Article and Find Full Text PDF

Entrainment of visuomotor responses to target speed during interception.

Neuroscience

January 2025

Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico; Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico.

Motor actions adapt dynamically to external changes through the brain's ability to predict sensory outcomes and adjust for discrepancies between anticipated and actual sensory inputs. In this study, we investigated how changes in target speed (v) and direction influenced visuomotor responses, focusing on gaze and manual joystick control during an interception task. Participants tracked a moving target with sinusoidal variations in v and directional changes, generating sensory prediction errors and requiring real-time adjustments.

View Article and Find Full Text PDF

SEEG guided mapping of primary motor cortex in children with epilepsy.

Epilepsy Res

January 2025

Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Background: Direct cortical electrical stimulation remains the gold standard for delineation of the primary motor cortex in patients with drug-resistant epilepsy (DRE) undergoing epilepsy surgery evaluation OBJECTIVE: This study aimed to explore the efficacy and safety of functional motor mapping through Stereo-EEG (SEEG) electrode contacts in children with DRE at our institute.

Methods: We performed a retrospective analysis of children who underwent SEEG evaluation and functional cortical mapping via bipolar electrical stimulation at our institution between July 2020 and June 2024. Detailed clinical, radiological and neurophysiological variable were extracted; qualitative and quantitative variables were summarized using appropriate descriptive statistics.

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!