The clinical presentation of mitochondrial DNA (mtDNA) disorders is quite diverse. Very often, the initial symptoms do not fit a specific disease, and diagnosis is difficult to make. We describe a patient who presented with macrocytic anemia. Extensive biochemical and clinical work-up failed to provide an etiology for the macrocytic anemia. The patient over the course of 6 years developed gait problems, exercise intolerance, episodic vomiting, short stature, dermatological problems, and recurrent infection. At age 8 years she had encephalopathy with ataxia and dysphagia. The presence of elevated lactate, bilateral basal ganglia calcification, and ragged red fibers led to mtDNA mutational analysis. A novel 4.4-kb deletion from nucleotide position 10,560 to nucleotide position 14, 980 was identified in muscle biopsy. The same heteroplasmic mtDNA deletion was present in blood, buccal cells, and hair follicles, but not in mother's blood, consistent with sporadic mutation in the patient. This case emphasizes the importance of considering mtDNA disorder in patients with multisystemic symptoms that cannot be explained by a specific diagnosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mitochondrial dna
8
macrocytic anemia
8
nucleotide position
8
clinical heterogeneity
4
heterogeneity mitochondrial
4
dna deletion
4
deletion disorders
4
disorders diagnostic
4
diagnostic challenge
4
challenge pearson
4

Similar Publications

Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.

Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.

View Article and Find Full Text PDF

Increased Rate of Unique Mitochondrial DNA Deletion Breakpoints in Young Adults With Early-Life Stress.

Biol Psychiatry Glob Open Sci

March 2025

Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island.

Background: Mounting evidence suggests that mitochondria respond to psychosocial stress. Recent studies suggest mitochondrial DNA (mtDNA) deletions may be increased in some psychiatric disorders, but no studies have examined early-life stress (ELS) and mtDNA deletions. In this study, we assessed mtDNA deletions in peripheral blood mononuclear cells of medically healthy young adults with and without ELS.

View Article and Find Full Text PDF

TDP43 augments astrocyte inflammatory activity through mtDNA-cGAS-STING axis in NMOSD.

J Neuroinflammation

January 2025

Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.

View Article and Find Full Text PDF

Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses.

View Article and Find Full Text PDF

Precise modelling of mitochondrial diseases using optimized mitoBEs.

Nature

January 2025

Changping Laboratory, Beijing, The People's Republic of China.

The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!