The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461354PMC
http://dx.doi.org/10.1093/genetics/156.4.1913DOI Listing

Publication Analysis

Top Keywords

divergence drosophila
8
drosophila simulans
8
genes sechellia
8
gene flow
8
sechellia
6
simulans
5
species
5
population genetics
4
genetics origin
4
divergence
4

Similar Publications

The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, , and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a chromosome-level assembly and annotation of and transcriptomes of 9 embryonic and 4 postembryonic stages.

View Article and Find Full Text PDF

In most Eukaryota, telomeres are protected by the CST complex, composed of CTC1, STN1 and TEN1. In Drosophila, instead, another complex is present, composed of Modigliani, Tea and Verrocchio. We performed a search for STN1 orthologs in Arthropoda, in order to verify if Verrocchio can be considered as such.

View Article and Find Full Text PDF

To better understand the sources of biological diversity in nature, we need information on the mechanisms underlying population divergence. Biological systems with patterns of naturally occurring adaptive variation among populations can provide insight into the genetic architecture of diverging traits and the influence of genetic constraints on responses to selection. Using a system of reproductive character displacement in the North American mushroom-feeding fly Drosophila subquinaria, we assessed patterns of genetic (co)variance among a suite of chemical signaling traits and divergence in this pattern among populations.

View Article and Find Full Text PDF

Chemical signals and social structures strengthen sexual isolation in Drosophila pseudoobscura.

Commun Biol

January 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.

Species that coexist in hybrid zones sexually isolate through reproductive character displacement, a mechanism that favours divergence between species. In Drosophila, behavioural and physiological traits discourage heterospecific mating between species. Recently, social network analysis revealed flies produce strain-specific and species-specific social structures.

View Article and Find Full Text PDF

Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax.

PLoS Genet

January 2025

Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.

Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!