Aims: We investigated the influence of tensile stress on plaque growth after balloon angioplasty with and without beta-radiation therapy.

Methods And Results: Thirty-one consecutive patients successfully treated with balloon angioplasty were analysed qualitatively and quantitatively by means of an ECG-gated three-dimensional intravascular ultrasound post-procedure and at follow-up. Eighteen patients were irradiated with catheter-based beta-radiation ((90)Sr/(90)Y source) and 13 were not (control). Studied segments were divided into 2 mm subsegments. Thus 184 irradiated and 111 non-irradiated subsegments were included. Tensile stress was calculated according to Laplace's law. The radiation dose was calculated by means of dose-volume histograms. Plaque growth was positively correlated to tensile stress in both the radiation and control groups (r=0.374, P=0.0001 and r=0.305, P=0.001). Low-dose subsegments (<6 Gy) had a significant correlation (r=0.410, P=0.0001) whereas no correlation was observed in the effective-dose subsegments (> or = 6 Gy). Multivariate analysis identified tensile stress as the only independent predictor of plaque increase in non-irradiated subsegments, whereas actual dose and plaque morphology were stronger predictors in irradiated subsegments.

Conclusion: The results of this study suggest that plaque growth is related to tensile stress after balloon angioplasty. Intracoronary brachytherapy may alter the biophysical process on plaque growth when the prescribed dose is effectively delivered.

Download full-text PDF

Source
http://dx.doi.org/10.1053/euhj.2000.2465DOI Listing

Publication Analysis

Top Keywords

tensile stress
24
plaque growth
20
balloon angioplasty
16
stress plaque
8
growth balloon
8
non-irradiated subsegments
8
plaque
7
stress
6
growth
5
tensile
5

Similar Publications

Stress Relaxation for Lead Iodide Nucleation in Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.

View Article and Find Full Text PDF

Background: Resistin may connect obesity and intervertebral disc (IVD) degeneration (IDD) and is linked with chronic inflammation. Furthermore, human IDD is characterized by high expression of interleukin-20 (IL-20). The response of human nucleus pulposus (NP) cells to tensile forces depends on both the duration and magnitude of the force applied.

View Article and Find Full Text PDF

Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief.

ACS Nano

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.

Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.

View Article and Find Full Text PDF

Graft-to/Graft-From Synthesis of Janus Graft Copolymers for Bottlebrush Polymer Electrolytes.

Macromol Rapid Commun

January 2025

Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Janus graft copolymers, which combine the characteristics of block and graft copolymers, have been used in the fields of reaction catalysis, surface modification, and drug delivery, but their applications in lithium batteries have rarely been reported. Herein, Janus graft copolymers with polyethylene glycol (PEG) and polystyrene (PS) side chains are synthesized by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) methods and doped with lithium salts to fabricate Janus bottlebrush polymer electrolytes (PEG-J-PS). The PEG side chains of the brush polymers impart good ion-conducting properties to the electrolytes, while the PS side chains improve the mechanical strength and thermal and chemical stability of the electrolytes.

View Article and Find Full Text PDF

This study aims to investigate the effects of material compatibility, variable cooling rates, and crown geometry on thermal stress development in porcelain-veneered lithium disilicate (PVLD) and porcelain-veneered zirconia (PVZ) dental crown systems, and subsequently anticipate parameters for their optimum performance. An anatomically correct 3D crown model was developed from STL files generated using 3D scans of the experimental crown sample. Next, the viscoelastic finite element model (VFEM) based on the 3D crown model was developed and validated for anatomically correct bilayer PVLD and PVZ crown systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!