It is well known that the defect in bone resorption in osteopetrotic (op/op) mice brings about deformation of the cranium and failure of tooth eruption. However, the influences on longitudinal growth of the craniofacial skeleton have not been elucidated. This study was thus conducted to examine craniofacial morphology and longitudinal changes in the op/op mice by means of morphometric analysis with lateral cephalograms. Lateral cephalograms, taken every 10 days from 10- to 90-day-old mice, were analyzed on a personal computer for 11 measurement items. For the nasal bone region, the most prominent differences were found between the op/op and normal mice. The anterior cranial base and occipital bone height presented almost equivalent growth changes in both the op/op and normal mice. The size of mandible, meanwhile, was significantly smaller in the op/op mice than in the normal controls. The gonial angle was also significantly larger in the op/op mice than in the normal mice throughout the experimental period. Thus, substantial differences in craniofacial growth were demonstrated in various areas of the craniofacial complex, which are assumed essentially due to the lack of osteoclastic bone resorption during growing period. Since the difference became more prominent in the anatomic regions relevant to the masticatory functions, it would be a reasonable assumption that reduced masticatory function is also a key determinant for the less-developed craniofacial skeleton in the op/op mouse.
Download full-text PDF |
Source |
---|
Front Endocrinol (Lausanne)
December 2022
Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland.
Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. , rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts.
View Article and Find Full Text PDFImmunity
May 2022
Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Peter Munk Cardiac Centre, Toronto, ON, Canada. Electronic address:
Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood.
View Article and Find Full Text PDFSci Rep
November 2021
Unaffiliated, Vienna, Austria.
Macrophage colony-stimulating factor 1 (M-CSF) is known to play a critical role during fracture repair e.g. by recruiting stem cells to the fracture site and impacting hard callus formation by stimulating osteoclastogenesis.
View Article and Find Full Text PDFBiomed Res Int
May 2021
Department of General Surgery, Chinese PLA General Hospital, No. 28 Fuxing Rd. Beijing 100853, China.
Objectives: In Crohn's disease (CD), the mechanisms underlying the regulation by granulocyte-macrophage colony-stimulating factor (GM-CSF) of mucosal barrier function in the ileum are unclear. We analyzed the molecular mechanisms underlying the regulation by GM-CSF of the mucosal barrier function.
Methods: We examined the role of GM-CSF in the intestinal barrier function in CD at the molecular-, cellular-, and animal-model levels.
J Biol Chem
September 2021
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany. Electronic address:
The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!