A three-year old male cynomolgus macaque (Macaca fascicularis) presented with clinical signs of anorexia and depression that decreased over a 48-hour period. Results of abdominal radiography abdominocentesis, blood biochemical analysis and CBC suggested septic peritonitis. Exploratory laparotomy revealed multiple perforations along the mesenteric border of the small intestine. Necropsy revealed masses of fibrous material in the stomach and cecum. Multiple mucosal ulcerations, as well as linear fibrous material, were found in the small intestine. The ulceration, perforations, and septic peritonitis were attributed to the ingestion of rope that had been attached to the animal's cage as an environmental-enrichment device.

Download full-text PDF

Source

Publication Analysis

Top Keywords

macaque macaca
8
macaca fascicularis
8
septic peritonitis
8
small intestine
8
fibrous material
8
environmental enrichment-related
4
enrichment-related injury
4
injury macaque
4
fascicularis intestinal
4
intestinal linear
4

Similar Publications

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Biogen, Cambridge, MA, USA.

Background: Intrathecally (IT) delivered antisense oligonucleotides (ASOs) are promising therapies that can reduce tau pathology in Alzheimer's Disease (AD). However, current plasma and CSF sampling methods to estimate brain tissue exposure of ASOs are inherently limited, hampering ASO clinical developmental plans. We developed the PET tracer [F]BIO-687, which binds ASO conjugates (ASO-Tz) in vivo, allowing us to image ASO distribution in a living brain using "pretargeted" imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!