The effect of the gene region on chromosome 2q33 containing the CD28 and the cytotoxic T-lymphocyte associated (CTLA4) genes has been investigated in several diseases with chronic inflammatory nature. In addition to celiac disease (CD), type I diabetes, Grave's disease, rheumatoid arthritis and multiple sclerosis have all demonstrated associations to the A/G single nucleotide polymorphism (SNP) in exon 1, position +49 of the CTLA4 gene. The purpose of this study was to investigate this gene region in a genetically homogeneous population consisting of 107 Swedish and Norwegian families with CD using genetic association and linkage methods. We found a significant association with preferential transmission of the A-allele of the exon 1 +49 polymorphism by using the transmission disequilibrium test (TDT). Suggestive linkage of this region to CD was moreover demonstrated by non-parametric linkage (NPL) analysis giving a NPL-score of 2.1. These data strongly indicates that the CTLA4 region is a susceptibility region in CD. Interestingly, of the several chronic inflammatory diseases that exhibit associations to the CTLA4 +49 A/G dimorphism, CD appears to be the only disease associated to the A allele. This suggests that the +49 alleles of the CTLA4 gene are in linkage disequilibrium with two distinct disease predisposing alleles with separate effects. The peculiar association found in the gut disorder CD may possibly relate to the fact that the gastrointestinal immune system, in contrast to the rest of the immune system, aims to establish tolerance to foreign proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1399-0039.2000.560407.xDOI Listing

Publication Analysis

Top Keywords

gene region
12
chronic inflammatory
12
region chromosome
8
chromosome 2q33
8
celiac disease
8
type diabetes
8
ctla4 gene
8
immune system
8
region
6
disease
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!