Copper accumulation and phosphatase activities of Aspergillus and Rhizopus.

Z Naturforsch C J Biosci

Laboratory of Microbial Ecology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia.

Published: March 2001

Copper accumulation and phosphatase activities of three Aspergillus species resistant to copper were compared to three copper-sensitive Rhizopus species. High level of acid phosphatases and decreased Cu2+-uptake were found with resistant in contrast to sensitive strains. The presence of copper(II) ions in the medium increased the production of acid phosphatases in the resistant A. niger and decreased their activity in the sensitive R. delemar. Copper ions inhibited the activity of A. niger cellular acid phosphatase with a Ki of 8.9x10(-4) M and slightly activated the R. delemar enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2000-9-1007DOI Listing

Publication Analysis

Top Keywords

copper accumulation
8
accumulation phosphatase
8
phosphatase activities
8
acid phosphatases
8
copper
4
activities aspergillus
4
aspergillus rhizopus
4
rhizopus copper
4
activities three
4
three aspergillus
4

Similar Publications

Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.

View Article and Find Full Text PDF

Background: Wilson's disease (WD) is a rare metabolic disorder of copper accumulation in organs such as liver, brain, and cornea. Diagnoses and treatments are challenging in settings, where advanced diagnostic tests are unavailable, copper chelating agents are frequently scarce, healthcare professionals lack disease awareness, and medical follow-ups are limited. Prompt diagnoses and treatments help prevent complications, improve patients' quality of life, and ensure a normal life expectancy.

View Article and Find Full Text PDF

Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies.

Biochim Biophys Acta Rev Cancer

January 2025

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:

Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.

View Article and Find Full Text PDF

Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions.

Environ Res

January 2025

Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!