Dalcochinin-8'-O-beta-glucoside beta-glucosidase (dalcochinase) from the Thai rosewood (Dalbergia cochinchinensis Pierre) has aglycone specificity for isoflavonoids and can hydrolyze both beta-glucosides and beta-fucosides. To determine its structure and evolutionary lineage, the sequence of the enzyme was determined by peptide sequencing followed by PCR cloning. The cDNA included a reading frame coding for 547 amino acids including a 23 amino acid propeptide and a 524 amino acid mature protein. The sequences determined at peptide level were found in the cDNA sequence, indicating the sequence obtained was indeed the dalcochinase enzyme. The mature enzyme is 60% identical to the cyanogenic beta-glucosidase from white clover glycosyl hydrolase family 1, for which an X-ray crystal structure has been solved. Based on this homology, residues which may contribute to the different substrate specificities of the two enzymes were identified. Eight putative glycosylation sites were identified, and one was confirmed to be glycosylated by Edman degradation and mass spectrometry. The protein was expressed as a prepro-alpha-mating factor fusion in Pichia pastoris, and the activity of the secreted enzyme was characterized. The recombinant enzyme and the enzyme purified from seeds showed the same K(m) for pNP-glucoside and pNP-fucoside, had the same ratio of V(max) for these substrates, and similarly hydrolyzed the natural substrate, dalcochinin-8'-beta-glucoside.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022852 | DOI Listing |
Biocontrol Sci
April 2017
Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University.
The antiaflatoxigenic and antifungal activities of essential oils (EOs) of finger root (Boesenbergia rotunda (L.) Mansf.), pine (Pinus pinaster), rosewood (Aniba rosaedora), Siam benzoin (Styrax tonkinensis), Thai moringa (Moringa oleifera), and ylang ylang (Cananga odorata) were tested for Aspergillus parasiticus and Aspergillus flavus in potato dextrose broth.
View Article and Find Full Text PDFEnzyme Microb Technol
April 2016
Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. Electronic address:
We explored the ability of a Thai rosewood β-glucosidase-displaying P. pastoris whole-cell biocatalyst (Pp-DCBGL) system to synthesize alkyl β-D-glucosides. The primary investigation centered on the synthesis of octyl-β-D-glucopyranoside (octyl-glu, OG).
View Article and Find Full Text PDFSoc Sci Med
February 2016
Anthropology Department, Macquarie University, Sydney, Australia. Electronic address:
Malaria elimination rather than control is increasingly globally endorsed, requiring new approaches wherein success is not measured by timely treatment of presenting cases but eradicating all presence of infection. This shift has gained urgency as resistance to artemisinin-combination therapies spreads in the Greater Mekong Sub-region (GMS) posing a threat to global health security. In the GMS, endemic malaria persists in forested border areas and elimination will require calibrated approaches to remove remaining pockets of residual infection.
View Article and Find Full Text PDFPhytochemistry
January 2006
Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
A beta-glucosidase (torvosidase) was purified to homogeneity from the young leaves of Solanum torvum. The enzyme was highly specific for cleavage of the glucose unit attached to the C-26 hydroxyl of furostanol glycosides from the same plant, namely torvosides A and H. Purified torvosidase is a monomeric glycoprotein, with a native molecular weight of 87 kDa by gel filtration and a pI of 8.
View Article and Find Full Text PDFArch Biochem Biophys
October 2005
Department of Biochemistry, Center for Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
Beta-glucosidases from cassava and Thai rosewood can synthesize a variety of alkyl glucosides using various alcohols as glucosyl acceptors for transglucosylation. Both enzymes were inactivated by 2-deoxy-2-fluoro-sugar analogues to form the covalent glycosyl-enzyme intermediates, indicating that the reaction mechanism was of the double-replacement type. The trapped enzyme intermediates were used for investigating transglucosylation specificity, by measuring the rate of reactivation by various alcohols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!