The maize Myb transcription factor C1 depends on the basic helix-loop-helix (bHLH) proteins R or B for regulatory function, but the closely related Myb protein P does not. We have used the similarity between the Myb domains of C1 and P to identify residues that specify the interaction between the Myb domain of C1 and the N-terminal region of R. Substitution of four predicted solvent-exposed residues in the first helix of the second Myb repeat of P with corresponding residues from C1 is sufficient to confer on P the ability to physically interact with R. However, two additional Myb domain amino acid changes are needed to make the P regulatory activity partially dependent on R in maize cells. Interestingly, when P is altered so that it interacts with R, it can activate the Bz1 promoter, normally regulated by C1 + R but not by P. Together, these findings demonstrate that the change of a few amino acids within highly similar Myb domains can mediate differential interactions with a transcriptional coregulator that plays a central role in the regulatory specificity of C1, and that Myb domains play important roles in combinatorial transcriptional regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17618 | PMC |
http://dx.doi.org/10.1073/pnas.250379897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!