Protein and lipid requirements for endocytosis.

Annu Rev Genet

Biozentrum-University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.

Published: March 2001

Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.genet.34.1.255DOI Listing

Publication Analysis

Top Keywords

endocytic machinery
8
protein lipid
4
lipid requirements
4
endocytosis
4
requirements endocytosis
4
endocytosis genetic
4
genetic biochemical
4
biochemical studies
4
studies yeast
4
yeast animal
4

Similar Publications

Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction.

Cells

December 2024

Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.

Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

Plasma membrane protein degradation and recycling are regulated by the endolysosomal system, wherein endocytic vesicles bud from the plasma membrane into the cytoplasm and mature into endosomes and then degradative lysosomes. As such, the endolysosomal system plays a critical role in determining the abundance of proteins on the cell surface and influencing cellular identity and function. Highly polarized cells, like neurons, rely on the endolysosomal system for axonal and dendritic specialization and synaptic compartmentalization.

View Article and Find Full Text PDF

dab2 is required for the scavenging function of lymphatic endothelial cells in the zebrafish meninges.

Sci Rep

November 2024

Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Röntgenstraße 16, 48149, Münster, Germany.

To date it is only partially understood how the brain is cleared of waste products resulting from its high metabolic activity, although this process has important implications for the development and progression of neurodegenerative diseases. Lymphatic vessels play a central role in maintaining fluid and tissue homeostasis, and the recent description of meningeal lymphatic vessels within the dura mater of mice, human and zebrafish has raised considerable interest in unraveling the function of these vessels. In zebrafish, brain lymphatic endothelial cells (BLECs) constitute an additional meningeal lymphatic endothelial cell population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!