Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.genet.34.1.255 | DOI Listing |
Cells
December 2024
Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Cell Biology, Harvard Medical School, Boston, MA 02115.
Plasma membrane protein degradation and recycling are regulated by the endolysosomal system, wherein endocytic vesicles bud from the plasma membrane into the cytoplasm and mature into endosomes and then degradative lysosomes. As such, the endolysosomal system plays a critical role in determining the abundance of proteins on the cell surface and influencing cellular identity and function. Highly polarized cells, like neurons, rely on the endolysosomal system for axonal and dendritic specialization and synaptic compartmentalization.
View Article and Find Full Text PDFSci Rep
November 2024
Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Röntgenstraße 16, 48149, Münster, Germany.
To date it is only partially understood how the brain is cleared of waste products resulting from its high metabolic activity, although this process has important implications for the development and progression of neurodegenerative diseases. Lymphatic vessels play a central role in maintaining fluid and tissue homeostasis, and the recent description of meningeal lymphatic vessels within the dura mater of mice, human and zebrafish has raised considerable interest in unraveling the function of these vessels. In zebrafish, brain lymphatic endothelial cells (BLECs) constitute an additional meningeal lymphatic endothelial cell population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!