Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At least eight dominant human neurodegenerative diseases are due to the expansion of a polyglutamine within the disease proteins. This confers toxicity on the proteins and is associated with nuclear inclusion formation. Recent findings indicate that molecular chaperones can modulate polyglutamine pathogenesis, but the basis of polyglutamine toxicity and the mechanism by which chaperones suppress neurodegeneration remains unknown. In a Drosophila: disease model, we demonstrate that chaperones show substrate specificity for polyglutamine protein, as well as synergy in suppression of neurotoxicity. Our analysis also reveals that chaperones alter the solubility properties of the protein, indicating that chaperone modulation of neurodegeneration in vivo is associated with altered biochemical properties of the mutant polyglutamine protein. These findings have implications for these and other human neurodegenerative diseases associated with abnormal protein aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/9.19.2811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!