Download full-text PDF

Source

Publication Analysis

Top Keywords

self-assembly pentameric
4
pentameric porphyrin
4
porphyrin light-harvesting
4
light-harvesting antennae
4
antennae complexes
4
complexes epsrc
4
epsrc rah
4
rah lister
4
lister institute
4
institute cah
4

Similar Publications

Cinquefoil Knot Possessing Dynamic and Tunable Metal Coordination.

J Am Chem Soc

August 2024

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.

While the majority of knots are made from the metal-template approach, the use of entangled, constrained knotted loops to modulate the coordination of the metal ions remains inadequately elucidated. Here, we report on the coordination chemistry of a 140-atom-long cinquefoil knotted strand comprising five tridentate and five bidentate chelating vacancies. The knotted loop is prepared through the self-assembly of asymmetric "3 + 2" dentate ligands with copper(II) ions that favor five-coordination geometry.

View Article and Find Full Text PDF

The synthesis and guest recognition properties of a neutral Pd-cubic cage, [{Pd(NPr)PO}(μ-Cl)] 1 are reported. The formation of the cubical assembly takes place by an exclusive one-pot ligand-assisted pathway directed by an oximido linker. The initial coordination of the oximido ligand pre-organizes the [Pd(NPr)PO] polyhedral building units into a tetrameric intermediate, which then transforms into an oximido-tethered tetrahedral assembly and to the cubical cage 1 in the presence of chloride ions.

View Article and Find Full Text PDF

HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated.

View Article and Find Full Text PDF

Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications.

View Article and Find Full Text PDF

Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!