We describe an improved genetic immunization strategy for eliciting a full spectrum of anti-hepatitis C virus (HCV) envelope 2 (E2) glycoprotein responses in mammals through electrical gene transfer (EGT) of plasmid DNA into muscle fibers. Intramuscular injection of a plasmid encoding a cross-reactive hypervariable region 1 (HVR1) peptide mimic fused at the N terminus of the E2 ectodomain, followed by electrical stimulation treatment in the form of high-frequency, low-voltage electric pulses, induced more than 10-fold-higher expression levels in the transfected mouse tissue. As a result of this substantial increment of in vivo antigen production, the humoral response induced in mice, rats, and rabbits ranged from 10- to 30-fold higher than that induced by conventional naked DNA immunization. Consequently, immune sera from EGT-treated mice displayed a broader cross-reactivity against HVR1 variants from natural isolates than sera from injected animals that were not subjected to electrical stimulation. Cellular response against E2 epitopes specific for helper and cytotoxic T cells was significantly improved by EGT. The EGT-mediated enhancement of humoral and cellular immunity is antigen independent, since comparable increases in antibody response against ciliary neurotrophic factor or in specific anti-human immunodeficiency virus type 1 gag CD8(+) T cells were obtained in rats and mice. Thus, the method described potentially provides a safe, low-cost treatment that may be scaled up to humans and may hold the key for future development of prophylactic or therapeutic vaccines against HCV and other infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC112441PMC
http://dx.doi.org/10.1128/jvi.74.24.11598-11607.2000DOI Listing

Publication Analysis

Top Keywords

electrical gene
8
gene transfer
8
electrical stimulation
8
enhancing t-cell
4
t-cell immune
4
response
4
immune response
4
response hepatitis
4
hepatitis virus
4
virus dna
4

Similar Publications

Inhibition of P2X7 receptor mitigates atrial fibrillation susceptibility in isoproterenol-induced rats.

Biochem Biophys Res Commun

January 2025

Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. Electronic address:

Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that is characterized by atrial electrical remodeling. The P2X7 receptor (P2X7R), an ATP-gated ion channel, has been implicated in cardiovascular pathologies; however, its role in atrial electrical remodeling remains unclear. This study investigated whether inhibition of P2X7R could mitigate isoproterenol (ISO)-induced atrial electrical remodeling in rats and explored the underlying mechanisms.

View Article and Find Full Text PDF

The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways.

View Article and Find Full Text PDF

Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability.

View Article and Find Full Text PDF

Identification of a novel heterozygous GPD1 missense variant in a Chinese adult patient with recurrent HTG-AP consuming a high-fat diet and heavy smoking.

BMC Med Genomics

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.

Background: Glycerol-3-phosphate dehydrogenase 1 (GPD1) gene defect can cause hypertriglyceridemia (HTG), which usually occurs in infants. The gene defect has rarely been reported in adult HTG patients. In the present study, we described the clinical and functional analyses of a novel GPD1 missense variant in a Chinese adult patient with recurrent hypertriglyceridemia‑related acute pancreatitis (HTG-AP), consuming a high-fat diet and smoking heavily.

View Article and Find Full Text PDF

Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor.

Biosens Bioelectron

January 2025

Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:

Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!