Nonequilibrium statistical mechanics of drifting particles.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

UMR 7603 CNRS, Universite Pierre et Marie Curie, Case 86, 4 Place Jussieu, 75 252 Paris Cedex 05, France.

Published: June 2000

This paper describes a method for obtaining nonequilibrium one-particle energy distributions of fermions or bosons. For the program to be carried out, particle transport should occur in the drifting mode in which the average velocity is much lower than the instantaneous velocity. Under this condition, the spectral current density has a drift-diffusion structure involving a mobility-diffusion relationship unrelated to statistics. When a local-equilibrium energy distribution is used, the linear response theory is recovered. Next, the particle-medium energy exchange is treated within a Fokker-Planck framework in order to obtain the nonequilibrium energy distribution; a nonlinear framework is used to account for the quantum-statistical correlations. Explicit formulas are obtained for homogeneous distributions at steady state. The rate of change of entropy is a simple generalization of the second law of thermodynamics. The positivity of the total entropy production stems from the positive definiteness of the diffusion tensors. Minimal entropy production is not necessarily achieved in the stationary state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.61.6351DOI Listing

Publication Analysis

Top Keywords

energy distribution
8
entropy production
8
nonequilibrium statistical
4
statistical mechanics
4
mechanics drifting
4
drifting particles
4
particles paper
4
paper describes
4
describes method
4
method obtaining
4

Similar Publications

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Purpose: To assess the effect of anterior chamber depth on corneal endothelium using specular microscopy following uneventful phacoemulsification among cataract patients with different axial lengths.

Methods: The study was conducted in a quasi-experimental design including 300 eyes of 300 patients with grade three age-related nuclear cataract distributed equally based on their axial length into three equal groups. All eyes had grade three nuclear cataract.

View Article and Find Full Text PDF

Distributed multi-agent reinforcement learning for multi-objective optimal dispatch of microgrids.

ISA Trans

January 2025

School of Control Science and Engineering, Shandong University, Jinan, 250012, China. Electronic address:

The distributed microgrids cooperate to accomplish economic and environmental objectives, which have a vital impact on maintaining the reliable and economic operation of power systems. Therefore a distributed multi-agent reinforcement learning (MARL) algorithm is put forward incorporating the actor-critic architecture, which learns multiple critics for subtasks and utilizes only information from neighbors to find dispatch strategy. Based on our proposed algorithm, multi-objective optimal dispatch problem of microgrids with continuous state changes and power values is dealt with.

View Article and Find Full Text PDF

A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors.

Int J Biol Macromol

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:

Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.

View Article and Find Full Text PDF

Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!