We tested if combining treatment with cariporide, an Na(+)/H(+) exchange inhibitor, and diazoxide, a mitochondrial ATP-sensitive K(+) (K(ATP)) channel opener, would reduce myocardial infarct size (IS) to a greater extent than either intervention alone. Four groups of rabbits were studied (n = 10 each): cariporide (0.3 mg/kg), diazoxide (10 mg/kg), both drugs, and saline control, given 15 min before a 30-min coronary artery occlusion and 3 h reperfusion. IS in controls comprised 47 +/- 6% of the risk region. Cariporide reduced IS by 55% compared with control (21 +/- 3%), but diazoxide did not significantly reduce IS compared with controls (37 +/- 6%). Combined treatment resulted in an IS of 18 +/- 5%. Also we determined that diazoxide did not potentiate a subthreshold dose of cariporide nor did a mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate (5-HD), prevent cariporide from reducing IS. Thus cariporide reduced necrosis by >50% in this model, both in the presence and absence of K(ATP) channel blockade. There was no significant difference in IS reduction between the group receiving cariporide alone and the group receiving combined treatment. Because the effect of cariporide was not blocked by 5-HD, it is unlikely that K(ATP) channels play a role as an end effector in cariporide's mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.2000.279.6.H2673DOI Listing

Publication Analysis

Top Keywords

katp channel
16
na+/h+ exchange
8
infarct size
8
cariporide
8
treatment cariporide
8
cariporide reduced
8
combined treatment
8
group receiving
8
combined katp
4
channel
4

Similar Publications

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.

View Article and Find Full Text PDF

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!