Detection of classical swine fever virus (CSFV) can be achieved by a range of assays of which the most commonly used are: immunohistochemical and virus culture techniques. New developments have enabled the detection of viral proteins by enzyme-linked immunosorbent assays (ELISAs) and the detection of the viral genome by RT- PCR. So far, laboratory findings show that the latter assays may supplement or replace the conventional techniques in the near future. The detection of serum antibody against structural and non-structural proteins of CSFV has been improved by developments in recombinant DNA techniques and has lead to a range of ELISAs. Although the characteristics of these ELISAs are excellent, positive results still need to be confirmed in the virus neutralization test. The available amount of sequence data enables diagnosticians to type strains of CSFV as different by comparing several parts of the genome. In some cases, this can provide conclusive evidence if a primary or secondary outbreak has been detected. Increased efforts focused on the retrieval of relevant data on the introduction of CSFV in a pig holding and the spread of CSFV in- and between pig holding(s) has generated more insight into the epizootiology of the disease. A successful control and eradication programme for classical swine fever (CSF) can consist of zoosanitary measures and/or vaccination. The latter can compromise the export of live pigs and pig products considerably unless marker vaccines have been used. Several studies were performed to determine the efficacy of an E2 subunit vaccine and live recombinant vaccine candidates. Firstly, we determined the 95% protective dose of an E2 subunit vaccine at 32 microg E2 per dosage after a single application. Further studies with a single administration of the subunit vaccine showed that: the vaccine was stable for a prolonged period after production, was able to reduce horizontal and vertical transmission of CSFV among vaccinated pigs, and provided protection for at least 6 months. An E(rns) antibody discriminatory assay was developed for use in combination with the subunit vaccine. Evaluation of the E(rns) ELISA showed that the sensitivity of the assay was lower than but that the specificity was equal to that of existing antibody assays. Two live recombinant marker vaccines were evaluated for the induction of clinical protection and reduction of transmission of CSFV shortly after vaccination. Results showed that these vaccines provided good clinical protection 1 week after a single vaccination. Research has shown that marker vaccines can be used in the future to support the control and eradication of CSFV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01652176.2000.9695054 | DOI Listing |
Int J Mol Sci
December 2024
College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.
View Article and Find Full Text PDFBMC Public Health
January 2025
Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan.
Background: Hepatitis B virus (HBV) surface antigen (HBsAg) seroprevalence was high before the national vaccine policy was introduced in Taiwan, indicating significant HBV infection rates. The success of the HBV immunization program and other preventive measures likely led to decreased HBsAg prevalence among pregnant women. This study reports on the HBV seroprevalence among pregnant women in Taiwan from 2016 to 2021, including those potentially affected by the universal hepatitis B vaccination at birth.
View Article and Find Full Text PDFViruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia.
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
ProBioGen AG, 13086 Berlin, Germany.
: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!