The alpha-diimine Fe2+ complexes, [Fe(phen)3]2+, [Fe(bpy)3]2+, and [Fe(terpy)2]2+, (phen: 1,10-phenanthroline, bpy: 2,2'-bipyridyl, terpy: alpha,alpha',alpha''-tripyridine) were intercalated into zirconium dihydrogenphosphate phosphate dihydrate (gamma-zirconium phosphate, gamma-ZrP), Zr(PO4)(H2PO4).2H2O. The rate of the intercalation, the molar ratio of Fe to Zr, was found to be 3.82-7.76%. Mössbauer spectra indicated that one part of [Fe(phen)3]2+ and [Fe(bpy)3]2+ changed from a low-spin Fe2+ to high-spin Fe2+ state on intercalation, but [Fe(terpy)2]2+ did not change in chemical state. The lattice dynamics of the complexes and the intercalation compounds were investigated in terms of the temperature dependence of the area intensity on the Mössbauer spectra. A linear relationship was established for all the complex salts and the intercalation compounds investigated between the ln[A(T)/A(82)] and absolute temperature, T, where A(T) and A(82) show the intensities of a doublet at T and 82 K of the Mössbauer spectra, respectively. From the slope of the linear relation, the theta2M values, which were derived based on the Debye approximation of lattice vibration, were evaluated for the complex salts and the intercalation compounds. The Fe2+ complexes showed theta2M values of 1.27 to 2.32 x 10(6), whereas the intercalation compounds showed very similar values to each other, ranging from 2.19 to 2.39 x 10(6), irrespective of different alpha-diimine ligands. The results were explained in terms of the characteristic layered structure of zirconium phosphate, and by the tight bond between the alpha-diimine Fe2+ complexes and the host gamma-ZrP.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.48.1602DOI Listing

Publication Analysis

Top Keywords

fe2+ complexes
16
intercalation compounds
16
alpha-diimine fe2+
12
mössbauer spectra
12
lattice dynamics
8
gamma-zirconium phosphate
8
[fephen3]2+ [febpy3]2+
8
compounds investigated
8
complex salts
8
salts intercalation
8

Similar Publications

A new way to combine carboxymethyl cellulose with Fe: Application and mechanism analysis.

Int J Biol Macromol

January 2025

School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China. Electronic address:

A new, effective powdered adsorbent (CMCFe) for removing oxytetracycline (OTC) was synthesized successfully in an acidic environment using a thermal fusion technique. CMC-Fe underwent comprehensive SEM, EDS, FT-IR, XRD, XPS, TGA, and BET analyses before and after adsorbing OTC. These studies systematically examined preparation variables such as CMC and FeCl ratios, acetic acid quantity, reaction duration, and temperature.

View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

Designing mimosine-containing peptides as efficient metal chelators: Insights from molecular dynamics and quantum calculations.

J Inorg Biochem

December 2024

Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:

Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.

View Article and Find Full Text PDF

Aims: This study aimed to explore the role and underlying mechanisms of brain-derived exosomes in traumatic brain injury-induced acute lung injury (TBI-induced ALI), with a particular focus on the potential regulation of ferroptosis through miRNAs and Scd1.

Methods: To elucidate TBI-induced ALI, we used a TBI mouse model. Exosomes were isolated from the brains of these mice and characterized using TEM and NTA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!