Relative binding affinity does not predict biological response to xenoestrogens in rat endometrial adenocarcinoma cells.

J Steroid Biochem Mol Biol

Institut für Molekulare Medizin, Medizinische Universität, Ratzeburger Allee 160, D-23538, Lübeck, Germany.

Published: October 2000

The possible adverse effects of the so-called environmental estrogens have raised considerable concern. Developmental, endocrine and reproductive disorders in wildlife animals have been linked to high exposure to persistent environmental chemicals with estrogen-like activity (xenoestrogens); yet, the potential impact of environmental estrogens on human health is currently under debate also due to lack of data. A battery of in vitro assays exist for identifying compounds with estrogenic activity, but only a few models are available to assess estrogenic potency in a multiparametric analysis. We have recently established the endometrial adenocarcinoma cell line RUCA-I; it enables us to compare estrogenic effects both in vitro and in vivo as these cells are estrogen responsive in vitro and grow estrogen sensitive tumors if inoculated in syngeneic animals in vivo. Here we report in vitro data concerning (a) the relative binding affinity of the selected synthetic chemicals Bisphenol A, nonylphenol, p-tert-octylphenol, and o,p-DDT to the estrogen receptor of RUCA-I cells and (b) the relative potency of these compounds in inducing increased production of complement C3, an endogenous estrogen-responsive gene. Competitive Scatchard analysis revealed that xenoestrogens bound with an at least 1000-fold lower affinity to the estrogen receptor of RUCA-I cells than estradiol itself, thereby exhibiting the following affinity ranking, estradiol>>>nonylphenol>bisphenol A approximately p-tert-octylphenol>o,p-DDT. Despite these low binding affinities, bisphenol A, nonylphenol and p-tert-octylphenol increased production of complement C3 in a dose dependent manner. Compared with estradiol, only 100-fold higher concentrations were needed for all the compounds to achieve similar levels of induction, except o,p-DDT which was by far less potent. Northern blot analyses demonstrated that the increased production of complement C3 was mediated by an increased transcription. In summary, cultured RUCA-I cells represent a valuable endometrial derived model system to assess the relative potencies and the molecular mode of action of environmental estrogens in vitro. Our results further show that no intimate correlation exists between the relative binding affinity and the biological response of these compounds. Therefore, data obtained from single-parametric analyses may result in misleading conclusions. On the other hand, the presented in vitro data will provide us with tools to study the activity of xenoestrogens in vivo and thus carry risk assessment one step further.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-0760(00)00092-3DOI Listing

Publication Analysis

Top Keywords

relative binding
12
binding affinity
12
environmental estrogens
12
ruca-i cells
12
increased production
12
production complement
12
biological response
8
endometrial adenocarcinoma
8
activity xenoestrogens
8
vitro data
8

Similar Publications

Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.

Biophys J

January 2025

Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:

In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.

View Article and Find Full Text PDF

Development of multifunctional fluorescence-emitting potential theranostic agents for Alzheimer's disease.

Talanta

January 2025

Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:

The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!