Neuronal receptors for phospholipases A(2 )and beta-neurotoxicity.

Biochimie

Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.

Published: January 2001

Some phospholipases A(2) interrupt neuromuscular communication by blocking the release of neurotransmitter into the synaptic cleft. Despite numerous studies, the molecular mechanism of their action is still largely obscure. In this review the best-characterized receptors for beta-neurotoxins are presented. We propose a model which could be useful in investigating the apparent inconsistency between the observed heterogeneity in the neuronal binding of beta-neurotoxins and the very similar pathomorphological and electrophysiological effects which they produce in the intoxicated tissue. We assume that beta-neurotoxins enter the nerve ending to exert their toxic effect. The model involves different pathways for phospholipase A(2) neurotoxins to reach the site of action inside the neuron, their respective extra- and intracellular neuronal receptors being key features of the pathway. Once in the nerve cell, beta-neurotoxins impair the function of the synaptic vesicles by phospholipid hydrolysis of the inner leaflet of the vesicle bilayer. The proportion of the products of the phospholipid hydrolysis, lysophospholipids and phospholipids in the membrane, has been demonstrated to be very important for the shaping of the membrane, affecting its fusogenic properties. Due to the same final step in the action of beta-neurotoxins, phospholipid hydrolysis, the consequences of their poisoning are practically identical.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9084(00)01172-xDOI Listing

Publication Analysis

Top Keywords

phospholipid hydrolysis
12
neuronal receptors
8
beta-neurotoxins
5
receptors phospholipases
4
phospholipases beta-neurotoxicity
4
beta-neurotoxicity phospholipases
4
phospholipases interrupt
4
interrupt neuromuscular
4
neuromuscular communication
4
communication blocking
4

Similar Publications

Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.

Cell Mol Biol Lett

January 2025

Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.

The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.

View Article and Find Full Text PDF

Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily.

Appl Biochem Biotechnol

January 2025

Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.

Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.

View Article and Find Full Text PDF

Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.

View Article and Find Full Text PDF

Elucidating on the Quaternary Structure of Viper Venom Phospholipase A Enzymes in Aqueous Solution.

Biochimie

January 2025

LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:

This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.

View Article and Find Full Text PDF

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!