A new ascovirus from Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda.

J Gen Virol

Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste Marie, ON P6A 5M7, Canada2.

Published: December 2000

A new ascovirus was isolated from Spodoptera exigua in Indonesia and was tentatively assigned as a new species, Spodoptera exigua ascovirus 5a (SeAV-5a) according to the present ICTV ascovirus naming scheme based on DNA restriction fragment length polymorphism (RFLP), hybridization, formation of occlusion body, tissue tropism and host spectrum. SeAV-5a replicated primarily in the fat body of susceptible hosts. SeAV-5a could be transmitted to S. frugiperda, Pseudoplusia includens and Trichoplusia ni, but not to Heliothis virescens. Infection with SeAV-5a arrested growth of the hosts, but prolonged their survival, which continued up to 33 days. Clusters of virions were seen inside the characteristic vesicles. Occasionally, virions were contained within vacuoles (one to five per vacuole) and some virions were embedded in occlusion bodies. The size of the SeAV-5a virion was 347x134 nm; however, aberrant long secondary viral products were also seen. The presence of occlusion body and Southern hybridization and Western immunoblot analyses suggest that SeAV-5a is more closely related to S. frugiperda ascovirus 1a (SfAV-1a) than to Trichoplusia ni ascovirus 2 (TnAV-2). Certain regions of the 182 kb genome of SeAV-5a showed hybridization to that of SfAV-1a. Two fragments in each of the SfAV-1a ECO:RI and HINdIII digests hybridized to the SeAV-5a genomic DNA probe. Five to eight HINdIII and ECORI fragments in SeAV-5a DNA hybridized to the SfAV-1a genomic probe.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-81-12-3083DOI Listing

Publication Analysis

Top Keywords

spodoptera exigua
12
seav-5a
9
frugiperda ascovirus
8
occlusion body
8
ascovirus
6
ascovirus spodoptera
4
exigua relatedness
4
relatedness isolate
4
isolate spodoptera
4
spodoptera frugiperda
4

Similar Publications

Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.

View Article and Find Full Text PDF

Stress-induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood.

View Article and Find Full Text PDF

Background: Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A.

View Article and Find Full Text PDF

Seasonal Migratory Activity of the Beet Armyworm (Hübner) in the Tropical Area of China.

Insects

December 2024

The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.

View Article and Find Full Text PDF

Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation.

BMC Genomics

January 2025

Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.

Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!