A new ascovirus was isolated from Spodoptera exigua in Indonesia and was tentatively assigned as a new species, Spodoptera exigua ascovirus 5a (SeAV-5a) according to the present ICTV ascovirus naming scheme based on DNA restriction fragment length polymorphism (RFLP), hybridization, formation of occlusion body, tissue tropism and host spectrum. SeAV-5a replicated primarily in the fat body of susceptible hosts. SeAV-5a could be transmitted to S. frugiperda, Pseudoplusia includens and Trichoplusia ni, but not to Heliothis virescens. Infection with SeAV-5a arrested growth of the hosts, but prolonged their survival, which continued up to 33 days. Clusters of virions were seen inside the characteristic vesicles. Occasionally, virions were contained within vacuoles (one to five per vacuole) and some virions were embedded in occlusion bodies. The size of the SeAV-5a virion was 347x134 nm; however, aberrant long secondary viral products were also seen. The presence of occlusion body and Southern hybridization and Western immunoblot analyses suggest that SeAV-5a is more closely related to S. frugiperda ascovirus 1a (SfAV-1a) than to Trichoplusia ni ascovirus 2 (TnAV-2). Certain regions of the 182 kb genome of SeAV-5a showed hybridization to that of SfAV-1a. Two fragments in each of the SfAV-1a ECO:RI and HINdIII digests hybridized to the SeAV-5a genomic DNA probe. Five to eight HINdIII and ECORI fragments in SeAV-5a DNA hybridized to the SfAV-1a genomic probe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-81-12-3083 | DOI Listing |
Plant Physiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.
Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Institute of Plant Sciences, University of Bern, Bern, Switzerland.
Stress-induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
Background: Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A.
View Article and Find Full Text PDFInsects
December 2024
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.
View Article and Find Full Text PDFBMC Genomics
January 2025
Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!