sconC, which encodes a negative regulator of sulphur metabolism in Aspergillus nidulans was cloned, sequenced, and found to belong to the highly conserved family of SKP1 genes essential for many cell functions, including cell cycle regulation. The ORF of 722 bp, encoding a protein of 161 amino acids, is interrupted by four introns. There is a fifth intron (135 bp long) in the upstream untranslated sequence. Two point mutations in conserved regions were identified in the mutant alleles sconC3 and sconC1, which result in relief of sulphur metabolite repression. The SCONC protein contains the PEST sequence common for proteins that are subject to rapid turnover. Transformation of the sconC3 mutant with sconB+ restores the wild-type phenotype. The sconB gene encodes a protein containing the F-box, a domain known to interact with Skp1 proteins. By analogy with other systems, it seems likely that the SCONC protein interacts with SCONB. sconC mRNA is present in the sconC3 and sconB2 mutants and the level of the sconC transcript seems not to be significantly regulated by supplementation of the medium with sulphur.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004380000319DOI Listing

Publication Analysis

Top Keywords

sulphur metabolism
8
metabolism aspergillus
8
aspergillus nidulans
8
sconc protein
8
sconc
6
sconc gene
4
gene involved
4
involved regulation
4
sulphur
4
regulation sulphur
4

Similar Publications

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

An electrochemical nano-genosensor for SARS-CoV-2 detection utilizing Ce-metal organic framework, dendritic palladium nano-structure, and sulfur-doped graphene oxide.

Talanta

January 2025

Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, 13169-43551, Tehran, Iran. Electronic address:

The emergence of COVID-19 has underscored an urgent demand to develop an innovative, rapid, and reliable diagnostic tool for early detection of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Biosensors present a viable alternative, offering reliability, precision, and cost efficiency that address the limitations of current molecular and serological detection methods, thus facilitating timely identification of COVID-19. In this study, a novel nano-genosenor platform fabricated using advanced nanomaterials based on Ce-metal organic framework (Ce-MOF), dendritic palladium nano-structure (Den-PdNS), and sulfur-doped reduced graphene oxide (S-rGO) for detection of RNA-dependent RNA polymerase (RdRp) SARS-CoV-2 gene targets.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!