Pretreatment with peroxisome proliferators protects mice against various hepatotoxicants. Since our previous work suggested that the hepatoprotection may involve an increased ability to cope with oxidative stress, the present work directly addressed this possibility. Several observations indicated a heightened defense against oxidative stress accompanies the hepatoprotection produced by clofibrate. Firstly, the carbonyl content of hepatic proteins from clofibrate-pretreated mice was 40% lower than those from vehicle-treated controls. Secondly, liver homogenates from clofibrate-pretreated mice produced less thiobarbituric acid reactive substances upon incubation under aerobic conditions or exposure to ferrous sulfate. This effect was not due to lower levels of peroxidation-prone polyunsaturated fatty acids in clofibrate-treated livers. Thirdly, in vitro experiments indicated that the antioxidant factor in liver homogenates from clofibrate-pretreated mice was not glutathione. Rather, since it was inactivated by proteases and heat treatment, we concluded that a protein is involved. Collectively, our results suggest that a resistance to lipid peroxidation develops in mouse liver during exposure to clofibrate. The identity of the putative antioxidant protein and its contribution to the protection against liver toxicity observed in this and other laboratories awaits future investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1099-0461(2000)14:6<335::AID-JBT6>3.0.CO;2-O | DOI Listing |
Toxicol Appl Pharmacol
August 2008
Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209-0470, USA.
The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPARalpha via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
May 2001
Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia, Australia.
Pretreatment with peroxisome proliferators protects mice against various hepatotoxicants. Since our previous work suggested that the hepatoprotection may involve an increased ability to cope with oxidative stress, the present work directly addressed this possibility. Several observations indicated a heightened defense against oxidative stress accompanies the hepatoprotection produced by clofibrate.
View Article and Find Full Text PDFToxicol Sci
July 2000
Department of Clinical and Experimental Pharmacology, The University of Adelaide, Adelaide, South Australia 5005, Australia.
Prior induction of peroxisome proliferation protects mice against the in vivo hepatotoxicity of acetaminophen and various other bioactivation-dependent toxicants. The mechanisms underlying such chemoresistance are poorly understood, although they have been suggested to involve alterations in glutathione homeostasis. To clarify the role of glutathione in this phenomenon, we isolated hepatocytes from mice in which hepatic peroxisome proliferation had been induced with clofibrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!