It is demonstrated that the nonrelativistic high energy omega-->infinity behavior of the photoionization cross section of an nl atomic subshell, sigma(nl)(omega), for l>0 is independent of l and is given by sigma(nl)(omega) approximately 1/omega(9/2), rather than the previously generally accepted sigma(nl)(omega) approximately 1/omega(l+7/2). Furthermore, for l = 1, although the exponent does not change, the coefficient is significantly altered. This modification of sigma(nl)(omega) is due to the interchannel interaction between ns photoionization channels and l not equal0 channels in the atom. As a result, for the photoionization of l not equal0 electrons, the single-particle approximation is never correct in the omega-->infinity limit. This has important consequences for sum rule calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.85.4703 | DOI Listing |
Acc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light ( = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-,-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
Conversion of nitrogen (N) to ammonia (NH) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-MoCS (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!