Vibrational modes in suspensions of soft colloids in a fluid can be detected experimentally by Brillouin light scattering. Besides the usual acoustic mode, being essentially the longitudinal phonon of the liquid matrix, an "opticlike" mode is observed in giant starlike micelles at low volume fractions. We propose that this opticlike mode is due mainly to the internal vibration of each hairy particle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.85.4622 | DOI Listing |
Soft Matter
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.
View Article and Find Full Text PDFJSES Rev Rep Tech
February 2025
Department of Orthopaedic Surgery, Elbow Shoulder Research Center, University of Kentucky College of Medicine, Lexington, KY, USA.
ACS Nano
January 2025
Leibniz Institute of Polymer Research, Dresden 01069, Germany.
Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.
View Article and Find Full Text PDFSoft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France.
We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!