AI Article Synopsis

Article Abstract

The mechanisms of disintegration of submicrometer particles irradiated by short laser pulses are studied by a molecular dynamics simulation technique. Simulations at different laser fluences are performed for particles with homogeneous composition and particles with transparent inclusions. Spatially nonuniform deposition of laser energy is found to play a major role in defining the character and the extent of disintegration. The processes that contribute to the disintegration include overheating and explosive decomposition of the illuminated side of the particle, spallation of the backside of large particles, and disruption of the transparent inclusion caused by the relaxation of the laser-induced pressure. The observed mechanisms are related to the nature of the disintegration products and implications of the simulation results for aerosol time-of-flight mass spectrometry are discussed. Application of multiple laser pulses is predicted to be advantageous for efficient mass spectrometry sampling of aerosols with a large size to laser penetration depth ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0007635DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulation
8
laser pulses
8
mass spectrometry
8
laser
6
disintegration
5
particles
5
simulation laser
4
laser disintegration
4
disintegration aerosol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!