Aims/hypothesis: In Type II (non-insulin-dependent) diabetes mellitus, amyloid depletes islet mass. We previously found that 81% of male human islet amyloid polypeptide (IAPP) transgenic mice but only 11% of female mice developed islet amyloid, suggesting that either testosterone promotes or ovarian products protect against amyloid deposition.
Methods: We did a bilateral oophorectomy or sham procedure in female human IAPP transgenic mice (n = 11 and n = 8, respectively) and in female non-transgenic mice (n = 7 and n = 9, respectively) at 6-8 weeks of age. Animals were followed for 1 year on a 9% fat (w/w) diet. Before we killed them we measured, fasting plasma human IAPP and did an intraperitoneal glucose tolerance test. Pancreatic content of IAPP and immunoreactive insulin (IRI) were estimated and pancreata were analysed for islet amyloid.
Results: No amyloid was detected in either the sham-operated transgenic mice or, as expected, in both groups of non-transgenic mice. In strong contrast, 7 of 11 (64%) oophorectomized mice developed islet amyloid (p < 0.05). Amyloid deposition in the oophorectomized transgenic mice was not associated with any differences in incremental body weight, fasting human IAPP concentrations or glucose tolerance between the groups. Furthermore, pancreatic content of mouse IAPP, human IAPP and immunoreactive insulin did not differ between groups.
Conclusion/interpretation: Oophorectomy is associated with an enhancement of islet amyloid formation in the absence of changes in glucose tolerance, circulating IAPP or pancreatic content of IRI, mouse or human IAPP. Thus, the early stages of islet amyloidogenesis seem to be independent of glucose tolerance, with ovarian products having a protective role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s001250051527 | DOI Listing |
Nanoscale
January 2025
Department of Engineering Mechanics, Hohai University, Nanjing 211100, P.R. China.
The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFHuman amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!