Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block.

Electrophoresis

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA.

Published: October 2000

AI Article Synopsis

Article Abstract

The biogenesis and maturation of phagosomes is an area of study which has been employing aspects of proteomic analyses and variations on that theme by identifying components on isolated organelles and following their dynamic changes and interactions with the endocytic pathway. In the case of Mycobacterium tuberculosis phagosome, the arrest of its maturation in infected macrophages, referred to in classical texts as the inhibition of phagosome-lysosome fusion, represents a phenomenon that is used to functionally dissect the phagosomal maturation pathway. In this review, we summarize the recent studies on regulators of membrane trafficking and other organelle components in the context of phagosomal biogenesis and mycobacterial phagosome maturation arrest.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1522-2683(20001001)21:16<3378::AID-ELPS3378>3.0.CO;2-BDOI Listing

Publication Analysis

Top Keywords

regulators membrane
8
membrane trafficking
8
mycobacterium tuberculosis
8
tuberculosis phagosome
8
phagosome maturation
8
maturation
5
trafficking mycobacterium
4
maturation block
4
block biogenesis
4
biogenesis maturation
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!