(+/-)-10,10-Dimethylhuperzine A (2, DMHA) has been synthesized, and its enantiomers have been separated using chiral HPLC. (-)-DMHA inhibits AChE with a Ki value approaching that of (-)-huperzine A, whereas (+)-DMHA shows no AChE inhibitory activity. On the other hand, both enantiomers are equally potent against glutamate-induced neurotoxicity when tested in neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-894x(00)00494-7 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, -selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:
Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratio up to 99% towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.
View Article and Find Full Text PDFPhytochemistry
January 2025
Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China. Electronic address:
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!