Characterisation and management of incinerator wastes.

J Hazard Mater

Departamento de Química, Universidad de Cantabria, Avda de los Castros s/n. 39005, Santander, Spain.

Published: December 2000

Management of municipal and hospital wastes by means of incineration processes generates solid residues, such as bottom and fly ashes and air pollution control residues with high content of heavy metals, inorganic salts and other organic compounds. Characterisation of 24 ash samples, collected from four municipal solid waste incinerators (MSWI) and six hospital medical waste incinerators (HMWI) located in the Basque Country Region (Northern Spain), were carried out at the request of Spanish Regulations and European Economic Community guidelines. The ecotoxicity values, EC(50), of the TCLP leachates show a high variability ranging from 12,967 to 1,000,000mgl(-1) in MSWI samples and from 2917 to 333,150mgl(-1) in HMWI samples. Results from chemical characterisation of DIN 38414-S4 leachates show a high concentration of lead, sulphate and chloride in MSWI samples and chromium in HMWI samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3894(00)00268-5DOI Listing

Publication Analysis

Top Keywords

waste incinerators
8
leachates high
8
mswi samples
8
hmwi samples
8
samples
5
characterisation management
4
management incinerator
4
incinerator wastes
4
wastes management
4
management municipal
4

Similar Publications

Electrochemical Deconstruction of Waste Polyvinylidene Chloride (PVDC) to Value-Added Products in Batch and Flow.

Chemistry

January 2025

Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.

Chlorinated polymers have made enormous contributions to materials science and are commercially produced on a large scale. These chlorinated polymers could be recycled as chlorine sources to efficiently produce valuable chlorinated compounds owing to their facile release of HCl. Although the thermal stability of PVDC is low compared to PVC, this can be advantageous in terms of easy and fast dehydrochlorination.

View Article and Find Full Text PDF

L-Aspartic Acid with Dual Functions: An Eco-Friendly and Affordable Choice to Accelerate High Salinity Brine Utilization.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China.

L-Aspartic acid (L-Asp) poses a dual function, which can affect the evaporation and crystallization process of the high-salinity brine by altering the physical or chemical properties of the salts. MSWI (municipal solid waste incineration) fly ash washing leachate, as a typical high-salinity brine, is utilized here to validate this hypothesis under the simulation guidance. Since L-Asp has stronger adsorption energy on the (110) crystal face of CaCO, L-Asp can facilitate the preferential growth of more valuable vaterite during the softening process (pretreatment before crystallization).

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

The speciation and thermal transformation characteristics of fluorine and chlorine in industrial wastes.

Environ Technol

January 2025

China State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.

The study investigated the chlorine and fluorine contents in three types of industrial solid waste: textile, plastic, and paper waste, utilizing various analytical methods. Significant variations in the proportions of organic and inorganic chlorine were observed among the waste types. During heat treatment, the majority of chlorine converts to a volatile state, with fixed chlorine content showing a correlation with organic chlorine.

View Article and Find Full Text PDF

This study addresses the challenge of reducing "net" toxic pollutant discharge, specifically dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), while minimizing the energy consumption and costs associated with detoxification. Our research focuses on reintroducing fly ash and scrubber sludge (ASR) into a hazardous waste thermal treatment system equipped with gasification-intense low oxygen dilution (GASMILD) and an advanced air pollution control system (APCS). This approach yielded a remarkable PCDD/F removal efficiency exceeding 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!