N-Benzyladriamycin (AD 288) is a highly lipophilic, semi-synthetic congener of doxorubicin (DOX). Unlike DOX, which stimulates double-stranded DNA scission by stabilizing topoisomerase II/DNA cleavable complexes, AD 288 is a catalytic inhibitor of topoisomerase II, capable of preventing topoisomerase II activity on DNA. The concentration of AD 288 required to inhibit the topoisomerase II-catalyzed decatenation of linked networks of kinetoplast DNA was comparable to that for DOX. However, AD 288 did not stabilize cleavable complex formation or stimulate topoisomerase II-mediated DNA cleavage. In addition, AD 288 inhibited the formation of cleavable complexes by etoposide in a concentration-dependent manner. Human CCRF-CEM cells and murine J774. 2 cells exhibiting resistance against DOX, teniposide, or 3'-hydroxy-3'-deaminodoxorubicin through reduced topoisomerase II activity remained sensitive to AD 288. These studies suggest that AD 288 inhibits topoisomerase II activity by preventing the initial non-covalent binding of topoisomerase II to DNA. Since AD 288 is a potent DNA intercalator, catalytic inhibition is achieved by prohibiting access of the enzyme to DNA binding sites. These results also demonstrate that specific substitutions on the aminosugar of DOX can alter the mechanism of topoisomerase II inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(00)00472-xDOI Listing

Publication Analysis

Top Keywords

topoisomerase activity
12
topoisomerase
10
0
9
catalytic inhibition
8
dna
8
n-benzyladriamycin 288
8
cleavable complexes
8
dox
5
inhibition dna
4
dna topoisomerase
4

Similar Publications

Purkay. is a lesser-known species of holly (family Aquifoliaceae) that is endemic to Northeast India. Designated as critically endangered, the plant is used in the treatments of bacterial infections, cancer, intestinal helminthiasis, tuberculosis, and viral infections.

View Article and Find Full Text PDF

TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway.

Sci Rep

January 2025

Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.

In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1.

View Article and Find Full Text PDF

Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol

January 2025

University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:

During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.

View Article and Find Full Text PDF

Mangiferin Protects Mesenchymal Stem Cells Against DNA Damage and Cellular Aging via SIRT1 Activation.

Mech Ageing Dev

January 2025

Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, Republic of Korea. Electronic address:

The protective effects of mangiferin (MAG) against etoposide- and high glucose (HG)-induced DNA damage and aging were investigated in human bone marrow-mesenchymal stem cells (hBM-MSCs). Etoposide, a topoisomerase II inhibitor, was used to induce double-strand breaks (DSBs) in hBM-MSCs, resulting in increased genotoxicity, elevated levels of the DNA damage sensor ATM and CDKN1A, and decreased levels of the aging markers H3 and H4. MAG activated AMPK and SIRT1, thus protecting against DSB-induced damage.

View Article and Find Full Text PDF

Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!