The dopamine D2 receptor (D2) system has been implicated in several neurological and psychiatric disorders, such as schizophrenia and Parkinson's disease. There are two isoforms of the D2 receptor: the long form (D2L) and the short form (D2S). The two isoforms are generated by alternative splicing of the same gene and differ only by 29 amino acids in their protein structures. Little is known about the distinct functions of either D2 isoform, primarily because selective pharmacological agents are not available. We generated D2L receptor-deficient (D2L-/-) mice by making a subtle mutation in the D2 gene. D2L-/- mice (which still express functional D2S) displayed reduced levels of locomotion and rearing behavior. Interestingly, haloperidol produced significantly less catalepsy and inhibition of locomotor activity in D2L-/- mice. These findings suggest that D2L and D2S may contribute differentially to the regulation of certain motor functions and to the induction of the extrapyramidal side effects associated with the use of typical antipsychotic drugs (e.g., haloperidol). Quinpirole induced a similar initial suppression of locomotor activity in both D2L-/- and wild-type mice. In addition, the D2S receptor in the mutant mice functioned approximately equally well as did D2L as an impulse-modulating autoreceptor. This suggests that the functions of these two isoforms are not dependent on the formation of receptor heterodimers. Our findings may provide novel information for potentially developing improved antipsychotic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773184PMC
http://dx.doi.org/10.1523/JNEUROSCI.20-22-08305.2000DOI Listing

Publication Analysis

Top Keywords

d2l-/- mice
12
locomotor activity
8
activity d2l-/-
8
antipsychotic drugs
8
mice
6
dopamine long
4
long receptor-deficient
4
receptor-deficient mice
4
mice display
4
display alterations
4

Similar Publications

Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress.

Biomed Pharmacother

November 2024

Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain. Electronic address:

Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress.

View Article and Find Full Text PDF

Opposite regulation by L-DOPA receptor GPR143 of the long and short forms of the dopamine D2 receptors.

J Pharmacol Sci

October 2024

Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. Electronic address:

Article Synopsis
  • Dopamine D2 receptors (D2Rs) exist in two isoforms, D2L (long form) primarily in postsynaptic locations, and D2S (short form) mainly acting as presynaptic autoreceptors.
  • L-DOPA enhances the function of D2L by interacting with GPR143, which was initially linked to ocular albinism, showing that GPR143 affects D2L and D2S oppositely.
  • Experiments on mice lacking Gpr143 showed reduced catalepsy from haloperidol and increased dopamine release in the striatum, indicating that GPR143 modulates D2 receptor signaling differently based on the specific isoform involved.
View Article and Find Full Text PDF

Schizophrenia is a serious psychiatric disorder that significantly affects the quality of life of patients. The objective of this study is to discover a novel antipsychotic candidate with highly antagonistic activity against both serotonin and dopamine receptors, demonstrating robust efficacy in animal models of positive, negative, and cognitive symptoms of schizophrenia. In the present study, we examined the activity of antipsychotic drug (NH300094) on 5-HT, 5-HT, 5-HT, 5-HT, 5-HT, H, M, Alpha, D, D, Alpha, D receptor functional assay .

View Article and Find Full Text PDF

[Development of early prediction and discriminating techniques for Lewy body diseases].

Nihon Yakurigaku Zasshi

January 2024

Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University.

The advent of a super-aged society poses urgent challenges in overcoming age-related neurological disorders and extending a healthy lifespan. Neurodegenerative diseases such as Alzheimer's disease, dementia with Lewy bodies, and Parkinson's disease are characterized by the accumulation of pathogenic proteins in the brain, leading to the formation of intracellular aggregates known as pathological hallmarks. In the early stages of protein accumulation, before the onset of clinical symptoms such as cognitive impairment or motor dysfunction, brain inflammation begins to occur.

View Article and Find Full Text PDF

[Development of therapeutic peptides for Lewy body diseases preventing α-synuclein propagation].

Nihon Yakurigaku Zasshi

November 2022

Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University.

With the advent of a super-aging society, overcoming age-related neurological diseases and developing fundamental therapeutic agents are urgent issues. In Lewy body diseases such as Parkinson's disease and dementia with Lewy bodies, the accumulation and aggregation of α-synuclein in the neuronal cells, called Lewy bodies, are known as pathological features. Intracellular accumulation of the causative protein α-synuclein in the central nervous system requires an uptake process into neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!