Total aerobic bacteria and fluorescent pseudomonads were counted in bulk and rhizospheric soils of banana plants of 14 plantations in Martinique (French West Indies). Fluorescent Pseudomonas isolates were then identified and investigated for in vitro antagonism towards Cylindrocladium sp., a fungal pathogen of banana roots. Total aerobic bacteria and fluorescent pseudomonads were significantly more abundant in rhizospheric soils than in bulk soils. Among 58 fluorescent Pseudomonas isolates, 41 were identified as Pseudomonas fluorescens biovar V and 17 as Ps. putida biovar A. Six strains exhibited an antagonism towards Cylindrocladium isolates. Among them, Ps. putida strain 93.1 totally blocked fungal growth. No relationship was established between the antifungal effect and enzyme or hydrogen cyanide production by bacteria, suggesting that siderophores and other compounds were involved in fungal inhibition. Antagonistic fluorescent pseudomonads represent a potential for the biological control of banana root infections by Cylindrocladium sp.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1472-765x.2000.00816.xDOI Listing

Publication Analysis

Top Keywords

fluorescent pseudomonads
16
banana plants
8
total aerobic
8
aerobic bacteria
8
bacteria fluorescent
8
rhizospheric soils
8
fluorescent pseudomonas
8
pseudomonas isolates
8
isolates identified
8
antagonism cylindrocladium
8

Similar Publications

Pseudomonas produce various metabolites displaying herbicide activity against broomrape.

Microbiol Res

January 2025

Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France. Electronic address:

Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation.

View Article and Find Full Text PDF

Taxonomy of spp. determines interactions with .

mSystems

October 2024

Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Unlabelled: Bacilli and pseudomonads are among the most well-studied microorganisms commonly found in soil and frequently co-isolated. Isolates from these two genera are frequently used as plant beneficial microorganisms; therefore, their interaction in the plant rhizosphere is relevant for agricultural applications. Despite this, no systematic approach has been employed to assess the coexistence of members from these genera.

View Article and Find Full Text PDF

Unlabelled: To gain insights into the diversity of sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the species complex and taxonomically classified into five genomospecies: pv. , , , , and .

View Article and Find Full Text PDF

In past few years, salinity has become one of the important abiotic stresses in the agricultural fields due to anthropogenic activities. Salinity is leading towards yield losses due to soil infertility and increasing vulnerability of crops to diseases. Fluorescent pseudomonads are a diverse group of soil microorganisms known for promoting plant growth by involving various traits including protecting crops from infection by the phytopathogens.

View Article and Find Full Text PDF

Pyoverdines are iron-chelating siderophores employed by various pseudomonads to promote their growth in iron-limited environments, facilitating both beneficial and detrimental interactions with co-inhabiting microbes or hosts, including plants and animals. The fluorescent pseudomonads produce fluorescent pyoverdines comprised of a conserved central chromophore and a unique strain-specific peptidic side chain produced by non-ribosomal peptide synthetases. Pyoverdine Pf5 (PVD-Pf5) is produced by Pf-5, a species known for supporting plant growth and its involvement in plant pathogen control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!