Several annexins have been shown to bind proteins that belong to the S100 calcium-binding protein family. The two best-characterized complexes are annexin II with p11 and annexin I with S100C, the former of which has been implicated in membrane fusion processes. We have solved the crystal structures of the complexes of p11 with annexin II N-terminus and of S100C with annexin I N-terminus. Using these structural results, as well as electron microscopy observations of liposome junctions formed in the presence of such complexes (Lambert et al., 1997 J Mol Biol 272, 42-55), we propose a computer generated model for the entire annexin II/p11 complex.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cbir.2000.0629DOI Listing

Publication Analysis

Top Keywords

p11 annexin
8
annexin n-terminus
8
annexin
5
s100-annexin complexes
4
complexes insights
4
insights structural
4
structural studies
4
studies annexins
4
annexins bind
4
bind proteins
4

Similar Publications

Identification and functional characterization of annexin A2 in half-smooth tongue sole (Cynoglossus semilaevis).

Fish Shellfish Immunol

May 2024

Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin, 300384, China; Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China. Electronic address:

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C.

View Article and Find Full Text PDF

S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10.

View Article and Find Full Text PDF

Ca-dependent membrane-binding by the Annexin A2/p11 heterotetramer (A2t) plays an important role in various biological processes including fibrinogen activation and exocytosis in neuroendocrine cells. Two models where A2t associates with a single membrane surface were generated and used to perform molecular dynamics simulations. The first model mimics initial A2t-membrane binding through both Annexin A2 (A2) subunits of A2t (TS model) while the second model mimics A2t-binding through a single A2 subunit (OS model).

View Article and Find Full Text PDF

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes.

View Article and Find Full Text PDF

Annexin A1 (A1) has been shown to form a tetrameric complex (A1t) with S100A11 which is implicated in calcium homeostasis and EGFR pathways. In this work, a full-length model of the A1t was generated for the first time. Multiple molecular dynamics simulations were performed on the complete A1t model for several hundred nanoseconds each to assess the structure and dynamics of A1t.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!