Xenorhabdus bovienii T228 phase variation and virulence are independent of RecA function.

Microbiology (Reading)

Microbiology and Immunology, Department of Molecular BioSciences, Adelaide University, Adelaide, South Australia 50051.

Published: November 2000

Colony pleomorphism, or phase variation, expressed by entomopathogenic bacteria belonging to the genus Xenorhabdus, is an important factor which determines the association of the bacteria with their nematode symbiont and the outcome of infection of susceptible insect larvae by the bacterium- nematode parasitic complex. The mechanism underlying phase variation is unknown. To determine whether RecA-mediated processes are linked to phase variation, the recA gene of Xenorhabdus bovienii was cloned and sequenced. When expressed in a recA-deleted strain of Escherichia coli, the X. bovienii recA clone was able to complement the loss of RecA function. X. bovienii chromosomal recA insertion mutants showed increased sensitivity to UV. Phase 1 forms did not show altered ability to convert to phase 2 and no significant differences in expression of other phase-dependent characteristics, including phospholipase C, haemolysin, protease, antibiotic activity and Congo Red binding, were noted. Furthermore, the LD(50) of the X. bovienii recA insertion mutant for Galleria mellonella larvae was not significantly different from that of wild-type strains. From these data the authors conclude that recA is unlikely to be involved in phase variation, the expression of phase-dependent characteristics, or virulence factors involved in killing of susceptible larvae.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-146-11-2815DOI Listing

Publication Analysis

Top Keywords

phase variation
20
xenorhabdus bovienii
8
reca function
8
bovienii reca
8
reca insertion
8
expression phase-dependent
8
phase-dependent characteristics
8
phase
7
reca
7
variation
5

Similar Publications

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

In-pixel foreground and contrast enhancement circuits with customizable mapping.

Sci Rep

January 2025

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.

This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation.

View Article and Find Full Text PDF

Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.

View Article and Find Full Text PDF

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Whilst efficient movement through space is thought to increase the fitness of long-distance migrants, evidence that selection acts upon such traits remains elusive. Here, using 228 migratory tracks collected from 102 adult breeding common terns (Sterna hirundo) aged 3-22 years, we find evidence that older terns navigate more efficiently than younger terns and that efficient navigation leads to a reduced migration duration and earlier arrival at the breeding and wintering grounds. We additionally find that the age-specificity of navigational efficiency in adult breeding birds cannot be explained by within-individual change with age (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!