Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo.

J Pharm Sci

Leiden/Amsterdam Center for Drug Research, Division of Pharmaceutical Technology, Leiden University, P.O. Box 9502, 2300RA Leiden, The Netherlands.

Published: January 2001

The synthesis and evaluation of mono-N-carboxymethyl chitosan (MCC) as an intestinal permeation enhancer for macromolecular therapeutics is presented. MCCs were synthesized from two different viscosity grade chitosans to yield both high and low viscosity grade products. These MCCs were tested on Caco-2 cells for their efficiency to decrease the transepithelial electrical resistance (TEER) and to increase the paracellular permeability of the anionic macromolecular anticoagulant low molecular weight heparin (LMWH). For in vivo studies, LMWH was administered intraduodenally with or without MCC to rats. Both types of experiments were performed at pH 7.4. Results show that both viscosity grade MCCs managed to significantly decrease the TEER of Caco-2 cell monolayers when they were applied apically at concentrations of 3-5% (w/v). Transport studies with Caco-2 cells revealed substantial increases of LMWH permeation in the presence of both viscosity grade MCCs compared with controls. In rats, 3% (w/v) low viscosity MCC significantly increased the intestinal absorption of LMWH, reaching the therapeutic anticoagulant blood levels of LMWH. Both in vitro and in vivo results indicate that the polyampholytic chitosan modification MCC is a suitable and functional polymer for the delivery and intestinal absorption of anionic macromolecular therapeutics like LMWH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1520-6017(200101)90:1<38::aid-jps5>3.0.co;2-3DOI Listing

Publication Analysis

Top Keywords

viscosity grade
16
intestinal absorption
12
mono-n-carboxymethyl chitosan
8
chitosan mcc
8
polyampholytic chitosan
8
low molecular
8
molecular weight
8
weight heparin
8
vitro vivo
8
macromolecular therapeutics
8

Similar Publications

Study on Starch-Based Thickeners in Chyme for Dysphagia Use.

Foods

December 2024

College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.

A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.

View Article and Find Full Text PDF

This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products.

View Article and Find Full Text PDF

High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates.

Int J Biol Macromol

January 2025

College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China.

In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.

View Article and Find Full Text PDF

Background: Skin aging is a multifaceted condition marked by the development of wrinkles, reduced suppleness, and uneven pigmentation. Both endogenous and exogenous factors contribute to skin aging. Studies have examined the possible anti-aging advantages of horsetail and soybean extracts, which are abundant in antioxidants.

View Article and Find Full Text PDF

The impact of active substance on the adhesiveness of medicated patches containing liquid additives.

Eur J Pharm Sci

December 2024

Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, Hallera av. 107, Gdansk 80-402, Poland.

Adhesiveness of dermal patches can be modified in the presence of active substances. The effect is more complex when liquid components are also present in the matrix. Commercial grade pressure sensitive adhesive (PSA) polyacrylates (three types) and silicones (two types) were used to prepare adhesive matrices and liquid additives were propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate or low viscosity silicone oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!