MGA2 and SPT23 are modifiers of transcriptional silencing in yeast.

Genetics

Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA.

Published: November 2000

Transcriptional silencing at the HM loci and telomeres in yeast depends on several trans-acting factors, including Rap1p and the Sir proteins. The SUM1-1 mutation was identified by its ability to restore silencing to strains deficient in one or more of these trans-acting factors. The mechanism by which SUM1-1 bypasses the requirement for silencing proteins is not known. We identified four loci that when reduced in dosage in diploid strains increase the ability of SUM1-1 strains to suppress silencing defects. Two of the genes responsible for this effect were found to be MGA2 and SPT23. Mga2p and Spt23p were previously identified as functionally related transcription factors that influence chromatin structure. We find that deletion of MGA2 or SPT23 also increases the efficiency of silencing in haploid SUM1-1 strains. These results suggest that Mga2p and Spt23p are antagonists of silencing. Consistent with this proposal we find that deletion of MGA2 or SPT23 also suppresses the silencing defects caused by deletion of the SIR1 gene or by mutations in the HMR silencer sequences. However, we find that Mga2p and Spt23p can positively affect silencing in other contexts; deletion of either MGA2 or SPT23 decreases mating in strains bearing mutations in the HML-E silencer. Mga2p and Spt23p appear to be a novel class of factors that influence disparate pathways of transcriptional control by chromatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461329PMC
http://dx.doi.org/10.1093/genetics/156.3.933DOI Listing

Publication Analysis

Top Keywords

mga2 spt23
20
mga2p spt23p
16
deletion mga2
12
silencing
9
transcriptional silencing
8
trans-acting factors
8
sum1-1 strains
8
silencing defects
8
factors influence
8
find deletion
8

Similar Publications

The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER.

View Article and Find Full Text PDF

The maintenance of a fluid lipid bilayer is key for membrane integrity and cell viability. We are only beginning to understand how eukaryotic cells sense and maintain the characteristic lipid compositions and bulk membrane properties of their organelles. One of the key factors determining membrane fluidity and phase behavior is the proportion of saturated and unsaturated acyl chains in membrane lipids.

View Article and Find Full Text PDF

In yeast, the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) tethers the ER to mitochondria, but its primary function remains unclear. To gain insight into ERMES functions, we screened multi-copy suppressors of the growth-defective phenotype of mmm1∆ cells, which lack a core component of ERMES, and identified MCP1, MGA2, SPT23, and YGR250C (termed RIE1). Spt23 and Mga2 are homologous transcription factors known to activate transcription of the OLE1 gene, which encodes the fatty acid ∆9 desaturase.

View Article and Find Full Text PDF

Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for specific UBX proteins are known, and hence the generality of this hypothesis remains untested.

View Article and Find Full Text PDF

The SaccharomycescerevisiaeMGA2 gene encodes an important regulator of unsaturated fatty acid production, by controlling transcription and mRNA stability of OLE1, the gene encoding the Δ9 fatty acid desaturase. Lipid composition studies indicated that the mga2Δ strain contains elevated relative amounts of squalene when compared to wild-type cells. The deletion of the MGA2 homologue SPT23 did not impact squalene levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!