Mutations of serine 236-237 and tyrosine 302 residues in the human lipoxin A4 receptor intracellular domains result in sustained signaling.

Biochemistry

Section of Rheumatology, Department of Medicine, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607, USA.

Published: November 2000

Lipoxin A(4) (LXA(4)) is a potent negative modulator of the inflammatory response. The antiinflammatory activities of LXA(4), such as inhibition of agonist-induced polymorphonuclear cell (PMN) chemotaxis and upregulation of beta-2 integrins, require the expression of a G-protein-coupled, high-affinity LXA(4) receptor (LXA(4)R). We now report that stimulation of PMN with proinflammatory agonist N-formyl peptides (FMLP), calcium ionophore A(23187), or phorbol mirystate acetate (PMA) is followed by marked downregulation of LXA(4) binding (B(max) decrease of approximately 45%) and decreased activation of phospholipases A(2) (PLA(2)) and D (PLD). Elucidation of the mechanisms underlying these effects was addressed by structure-function analyses of the intracellular domains of LXA(4)R. Mutant molecule, S236/S237 --> A/G (LXA(4)R(pk)) and Y302 --> F (LXA(4)R(tk)) were obtained by site-directed mutagenesis to yield receptors lacking the putative targets for serine/threonine kinase- or tyrosine kinase-dependent phosphorylation. Expression of wild-type and mutated LXA(4)R sequences in CHO and HL-60 cells was used to examine LXA(4) ligand-receptor interactions and signal transduction events. Results indicated that cells expressing LXA(4)R(pk) or LXA(4)R(tk) displayed sustained activation of PLA(2) and PLD in contrast to the transient ones obtained with LXA(4)R(wt) (peak activation at 2-3 min). Moreover, inhibition of LXA(4)-dependent PLA(2) activity by PMA in LXA(4)R(wt) transfected CHO cells was not observed in cells expressing LXA(4)R(pk). Phosphopeptide immunoblotting revealed that the functional differences between wild-type and mutant LXA(4) receptors are accompanied by distinct changes in the receptor protein phosphorylation pattern. Further characterization of these and related LXA(4)R intracellular domains will help to better understand specific events that regulate the antiinflammatory activities of LXA(4).

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi001196iDOI Listing

Publication Analysis

Top Keywords

intracellular domains
12
antiinflammatory activities
8
activities lxa4
8
pla2 pld
8
cells expressing
8
expressing lxa4rpk
8
lxa4
7
mutations serine
4
serine 236-237
4
236-237 tyrosine
4

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

To investigate the clinicopathological and genetic features of infantile rhabdomyofibrosarcoma (IRFS) with EGFR kinase domain duplication (EGFR-KDD). The clinical, morphological and immunohistochemical features of three IRFS with EGFR-KDD diagnosed from January 2022 to January 2024 at Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan, China were retrospectively analyzed using PCR or next generation sequencing technique; and related literature was reviewed. There were 1 male and 2 females, aged at presentation ranging from 1 to 4 years.

View Article and Find Full Text PDF

Structures and mRNP remodeling mechanism of the TREX-2 complex.

Structure

January 2025

Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2).

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!