The majority of investigations of the transverse tubules (T-system) of skeletal muscle have been devoted to their role in excitation-contraction coupling, with particular reference to contact with the sarcoplasmic reticulum and the mechanism of Ca2- release. By contrast, this review is concerned with structural and functional aspects of the vacuolation of T-tubules. It covers experimental procedures used in reversible vacuolation induced by the efflux-influx of glycerol and other small nonelectrolytes, sugars, and ions. The characteristics of the phenomenon, associated alterations in muscle function, and the swelling of analogous structures in nonmuscle cells are considered. Possible functions of reversible vacuolation in water balance, transport, membrane repair, muscle pathology, and fatigue are considered, and the potential application of reversible vacuolation in the transfection of skeletal muscle is discussed. In relation to the possible mechanisms involved in reversible vacuolation, particular attention is given to the dynamic and structural aspects of the opening and closing of T-tubules, the origin of vacuolar membranes, and the localized character of tubular swelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0074-7696(01)02006-xDOI Listing

Publication Analysis

Top Keywords

reversible vacuolation
20
skeletal muscle
12
vacuolation t-tubules
8
reversible
5
muscle
5
vacuolation
5
t-tubules skeletal
4
muscle mechanisms
4
mechanisms implications
4
implications cell
4

Similar Publications

Aim: To explore the neuroprotective effects of high mobility group box 2 () knockdown on retinal ganglion cells (RGCs) in the retinal ischemia-reperfusion injury (RIRI).

Methods: Oxygen-glucose deprivation (OGD)-injured RGCs from postnatal three-day C57BL/6 mice pups and high intraocular pressure (IOP)-induced RIRI mice were used as cellular and animal models of RIRI. The expression of HMGB2 in the retina of RIRI mice and OGD-injured RGCs was detected through reverse transcription-polymerase chain reaction (RT-qPCR) and Western blotting.

View Article and Find Full Text PDF

Thymol inhibits ergosterol biosynthesis in Nakaseomyces glabratus, but differently from azole antifungals.

J Mycol Med

December 2024

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.

View Article and Find Full Text PDF

Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.

View Article and Find Full Text PDF

Dynamic interplay of autophagy and membrane repair during Mycobacterium tuberculosis Infection.

PLoS Pathog

January 2025

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America.

Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the harmful effects of the pesticide etoxazole on the plant Allium cepa (onion) and explores the protective role of Achillea millefolium (yarrow) extract against this toxicity.
  • The research showed that etoxazole exposure significantly reduced growth metrics (like rooting percentage and root length) and increased harmful cellular changes, including chromosomal abnormalities.
  • Molecular docking results indicated that etoxazole directly interacts with DNA and key proteins, while A. millefolium extract, rich in phenolic compounds, may mitigate some of the toxic effects caused by the pesticide.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!