Remacemide: current status and clinical applications.

Expert Opin Investig Drugs

Departments of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, K-478, Boston, MA 02215, USA.

Published: April 2000

Remacemide (RMC) is a non-competitive, low-affinity N-methyl-D-aspartate (NMDA) receptor antagonist that does not cause the behavioural and neuropathological side effects seen with other NMDA receptor antagonists. RMC and its active metabolite, AR-R 12495 AR, which has moderate affinity for the NMDA receptor, also interact with voltage-dependent neuronal sodium channels. Both agents show efficacy in a variety of animal models of epilepsy, parkinsonism and cerebral ischaemia. There is no evidence for teratogenicity or genotoxicity. RMC delays the absorption of L-dopa and elevates the concentrations of drugs metabolised by the hepatic cytochrome P450 3A4 isoform. RMC and AR-R 12495 AR have moderate protein binding and linear pharmacokinetics. Controlled studies show evidence of efficacy in treating epilepsy and Parkinson's disease. Post-surgical outcomes in RMC-treated patients at risk for intra-operative cerebral ischaemia are also encouraging. Adverse effects are related to the gastrointestinal and central nervous systems. RMC is a promising drug with numerous potential applications for both acute or chronic conditions associated with glutamate-mediated neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1517/13543784.9.4.871DOI Listing

Publication Analysis

Top Keywords

nmda receptor
12
ar-r 12495
8
12495 moderate
8
cerebral ischaemia
8
rmc
5
remacemide current
4
current status
4
status clinical
4
clinical applications
4
applications remacemide
4

Similar Publications

Background: Arc is a synaptic immediate early gene that mediates two distinct pathways at excitatory synapses. Canonically, Arc accelerates endocytosis of AMPA receptors by direct binding to TARPgs and endocytic machinery and thereby contributes to mGluR-LTD. Arc also acts at recently potentiated synapses, where it is phosphorylated by CaMKII and binds NMDAR subunits NR2A and NR2B and recruits the PI3K adaptor p55PIK to assemble a signaling complex that activates AKT and inhibits GSK3β.

View Article and Find Full Text PDF

Background: The U.S. Population is older today than it has ever been.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.

Background: Neurotransmitter receptors' contribution to Alzheimer's disease (AD) pathology development has been implicated by basic science studies but is yet to be fully established. Here, we incorporate receptor density maps into network spreading models to predict amyloid and tau patterns in AD, reflecting their potential roles in facilitating or impeding pathology production and connectivity-mediated spread.

Method: Amyloid-PET positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were divided into "early" (n = 119) and "late" (n = 69) pathology groups according to tau accumulation in the temporal cortex (Figure 1A).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Faculty of Medicine, Arish University, Arish, North Sinai, Egypt.

Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study's aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer's Dementia (AD).

Methods: Retrospective trials on rodents i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!