Dislocated epitaxial islands.

Phys Rev Lett

IBM Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598, USA.

Published: November 2000

Dislocation networks observed in CoSi (2) islands grown epitaxially on Si are compared with the results of dislocation-dynamics calculations. The calculations make use of the fact that image forces play a relatively minor role compared to line tension forces and dislocation-dislocation interactions. Remarkable agreement is achieved, demonstrating that this approach can be applied more generally to study dislocations in other mesostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.85.4088DOI Listing

Publication Analysis

Top Keywords

dislocated epitaxial
4
epitaxial islands
4
islands dislocation
4
dislocation networks
4
networks observed
4
observed cosi
4
cosi islands
4
islands grown
4
grown epitaxially
4
epitaxially compared
4

Similar Publications

Anisotropically Epitaxial P-N Heterostructures Actuating Efficient Z-Scheme Photocatalytic Water Splitting.

Small

January 2025

Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.

View Article and Find Full Text PDF

Characterizing threading dislocations (TDs) in gallium nitride (GaN) semiconductors is crucial for ensuring the reliability of semiconductor devices. The current research addresses this issue by combining two techniques using a scanning electron microscope, namely electron channeling contrast imaging (ECCI) and high-resolution electron backscattered diffraction (HR-EBSD). It is a comparative study of these techniques to underscore how they perform in the evaluation of TD densities in GaN epitaxial layers.

View Article and Find Full Text PDF

GaN is rapidly gaining attention for implementation in power electronics but is still impacted by its high density of threading dislocations (TDs), which have been shown to facilitate current leakage through devices limiting their performance and reliability. Here, we discuss a novel implementation of photoluminescence (PL) imaging to study TDs in regions within vertically structured p-i-n GaN (PIN) diodes consisting of metalorganic chemical vapor deposition (MOCVD) epitaxial layers grown on ammonothermal GaN (am-GaN) substrates. PL imaging with a sub-bandgap excitation energy (3.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Programmable Self-Assembly from Two-Dimensional Nanosheets to Spiral, Twisted and Branched Nanostructures.

Angew Chem Int Ed Engl

December 2024

Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China.

Self-assembly of nanomaterials into hierarchical structure is of great interest to fabricate functional materials. However, programmable design of the assembled structures remains a great challenge. Herein, we reported a programmable self-assembly strategy to customize the assembled structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!