Polynucleotide:Adenosine glycosidase is the sole activity of ribosome-inactivating proteins on DNA.

J Biochem

Department of Experimental Pathology, University of Bologna, Via San Giacomo 14, I-40126 Bologna, Italy.

Published: November 2000

Polynucleotide: adenosine glycosidases (PNAG) are a class of plant and bacterial enzymes commonly known as ribosome-inactivating proteins (RIP). They are presently classified as rRNA N-glycosidases in the enzyme nomenclature [EC 3.2.2.22]. Several activities on nucleic acids, other than depurination, have been attributed to PNAG: in particular modifications induced in circular plasmids, including linearisation and topological changes, and cleavage of guanidinic residues. Here we describe a chromatographic procedure to obtain nuclease-free PNAG by dye-chromatography onto Procion Red derivatized Sepharose((R)). Highly purified enzymes depurinate extensively pBR322 circular, supercoiled DNA at neutral pH and exhibit neither DNase nor DNA glycolyase activities, do not cause topological changes, and adenine is the only base released from DNA and rRNA, even at very high enzyme concentrations. A scanning force microscopy (SFM) study of pBR322 treated with saporin-S6 confirmed that (i) this PNAG binds extensively to the plasmid, (ii) the distribution of the bound saporin-S6 molecules along the DNA chain is markedly variable, (iii) plasmids already digested with saporin-S6 do not appear fragmented or topologically modified. The observations here described demonstrate that polynucleotide:adenosine glycosidase is the sole enzymatic activity of the four ribosome-inactivating proteins gelonin, momordin I, pokeweed antiviral protein from seeds and saporin-S6. These proteins belong to different families, suggesting that the findings here described may be generalized to all PNAG.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022827DOI Listing

Publication Analysis

Top Keywords

ribosome-inactivating proteins
12
polynucleotideadenosine glycosidase
8
glycosidase sole
8
activity ribosome-inactivating
8
topological changes
8
dna
5
pnag
5
sole activity
4
proteins
4
proteins dna
4

Similar Publications

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.

View Article and Find Full Text PDF

[Mechanism of autophagy inhibition for sensitizing HeLa cell apoptosis induced by trichosanthin].

Zhongguo Zhong Yao Za Zhi

October 2024

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy(China Three Gorges University) Yichang 443002, China Department of Pathology, College of Basic Medical Science, China Three Gorges University Yichang 443002,China Research Center of Basic and Clinical Pathology, China Three Gorges University Yichang 443002, China.

This research investigated the effect and mechanism of trichosanthin(TCS) in inducing autophagy and apoptosis of HeLa cells in cervical cancer. Two-step chromatography was used to prepare TCS. MTT assay was used to detect the inhibition effect of TCS on the proliferation of HeLa cells.

View Article and Find Full Text PDF

Background: Bacillus subtilis is widely used for industrial enzyme production due to its capacity to efficiently secrete proteins. However, secretion efficiency of enzymes varies widely, and optimizing secretion is crucial to make production commercially viable. Previously, we have shown that overexpression of the xylanase XynA lowers expression of Clp protein chaperones, and that inactivation of CtsR, which regulates and represses clp transcription, increases the production of XynA.

View Article and Find Full Text PDF

Puromycin (Puro) is a natural aminonucleoside antibiotic that inhibits protein synthesis by its incorporation into elongating peptide chains. The unique mechanism of Puro finds diverse applications in molecular biology, including the selection of genetically engineered cell lines, in situ protein synthesis monitoring, and studying ribosome functions. However, the key step of Puro biosynthesis remains enigmatic.

View Article and Find Full Text PDF

In silico structural and mechanistic sights into the N-glycosidase mechanism of Shiga toxin.

Arch Toxicol

December 2024

Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, #408, 4th Floor, Warangal, 506004, India.

Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!