To date, two distinct genes coding for Ras GAP-binding phosphoproteins of 190kDa, p190-A and p190-B, have been cloned from mammalian cells. Rat p190-A of 1513 amino acids shares 50% sequence identity with human p190-B of 1499 amino acids. We have previously demonstrated, using rat p190-A cDNA, that full-length p190-A is a tumor suppressor, reversing v-Ha-Ras-induced malignancy of NIH 3T3 cells through both the N-terminal GTPase (residues 1-251) and the C-terminal Rho GAP (residues 1168-1441) domains. Here we report the cloning of the full-length human p190-A cDNA and its first exon covering more than 80% of this protein, as well as its chromosomal mapping. Human p190-A encodes a protein of 1514 amino acids, and shares overall 97% sequence identity with rat p190-A. Like the p190-B exon, the first exon of p190-A is extremely large (3.7 kb in length), encoding both the GTPase and middle domains (residues 1-1228), but not the remaining GAP domain, suggesting a high conservation of genomic structure between two p190 genes. Using a well characterized monochromosome somatic cell hybrid panel, fluorescent in situ hybridization (FISH) and other complementary approaches, we have mapped the p190-A gene between the markers D19S241E and STD (500 kb region) of human chromosome 19q13.3. Interestingly, this chromosomal region is known to be rearranged in a variety of human solid tumors including pancreatic carcinomas and gliomas. Moreover, at least 40% glioblastoma/astrocytoma cases with breakpoints in this region were previously reported to show loss of the chromosomal region encompassing p190-A, suggesting the possibility that loss or mutations of this gene might be in part responsible for the development of these tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(00)00387-5 | DOI Listing |
The biological mechanisms underlying women's increased Alzheimer's disease (AD) prevalence remain undefined. Previous case/control studies have identified sex-biased molecular pathways, but sex-specific relationships between gene expression and AD endophenotypes, particularly sex chromosomes, are underexplored. With bulk transcriptomic data across 3 brain regions from 767 decedents, we investigated sex-specific associations between gene expression and post-mortem β-amyloid and tau as well as antemortem longitudinal cognition.
View Article and Find Full Text PDFTaiwan J Ophthalmol
January 2024
NHO Tokyo Medical Center, National Institute of Sensory Organs, Tokyo, Japan.
Age-related macular degeneration (AMD) is one of the leading causes of severe irreversible blindness worldwide in the elderly population. AMD is a multifactorial disease mainly caused by advanced age, environmental factors, and genetic variations. Genome-wide association studies (GWAS) have strongly supported the link between locus on chromosome 10q26 and AMD development, encompassing multiple variants, rs10490924 (c.
View Article and Find Full Text PDFPartial migration is a phenomenon where migratory and resident individuals of the same species co-exist within a population, and has been linked to both intrinsic (e.g., genetic) as well as environmental factors.
View Article and Find Full Text PDFThe chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.
View Article and Find Full Text PDFHortic Res
January 2025
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China.
Alfalfa is one of the most economically valuable forage crops in the world. However, molecular cytogenetic studies in alfalfa lag far behind other cash crops and have reached a bottleneck. Here, we developed a novel chromosome identification system by designing 21 oligo probes in specific regions of each chromosome, which can be used as a barcode to simultaneously distinguish all chromosomes in a cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!