The mechanisms responsible for the hematopoietic failure in human immunodeficiency virus type 1 (HIV-1)-infected patients are still unknown. Several findings indicate that the in vitro proliferative potential of precursor cells from AIDS patients is reduced. The changes seen in bone marrow (BM) morphology and the defective BM functions associated with cytopenias have both been proposed as potential explanations. In patients treated with highly active antiretroviral therapy (HAART) an immune reconstitution associated with increased whole blood cell counts has been described. We have investigated the effects of HAART on the number of colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs), using long-term BM cell cultures (LTBMC) in a group of subjects with HIV-1 infection enrolled in an open study to evaluate the mechanisms of immune reconstitution during HAART. In each patient, the increase in colony growth was homogeneous, regardless of the type of hematopoietic progenitor cells assayed; in four subjects an increase in the most primitive progenitor cells (LTC-ICs) was observed. These findings were associated with the in vivo data showing increased numbers of BM mononuclear cells (BMMCs) after HAART and with a rise in peripheral CD4(+) T cell counts and decreased levels of plasma HIV-1 RNA. A decreased number of hematopoietic progenitor cells and/or a defective modulation of progenitor cell growth might be the cause of the hematological abnormalities in AIDS patients. Controlling HIV-1 replication by HAART could determine a restoration of stem cell activity, probably because of the suppression of factors that inhibit normal hematopoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/088922200750005994DOI Listing

Publication Analysis

Top Keywords

progenitor cells
12
bone marrow
8
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
highly active
8
active antiretroviral
8
antiretroviral therapy
8
aids patients
8
immune reconstitution
8

Similar Publications

From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa.

Domest Anim Endocrinol

January 2025

BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:

This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.

View Article and Find Full Text PDF

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans.

PLoS Genet

January 2025

Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!