Lack of MHC-mediated antigen presenting functions of fetal trophoblast cells is an important mechanism to evade maternal immune recognition. In this study we demonstrated that the deficiency in MHC expression and antigen presentation in the trophoblast cell lines JEG-3 and JAR is caused by lack of class II transactivator (CIITA) expression due to hypermethylation of its interferon-gamma (IFN-gamma)-responsive promoter (PIV). Circumvention of this lack of CIITA expression by introduction of exogenous CIITA induced cell surface expression of HLA-DR, -DP, and -DQ, leading to an acquired capacity to present antigen to antigen-specific T cells. Transfection of CIITA in JEG-3 cells also upregulated functional HLA-B and HLA-C expression. Noteworthy, this lack of IFN-gamma-mediated induction of CIITA was also found to exist in normal trophoblast cells expanded from chorionic villus biopsies. Together, these observations demonstrate that lack of CIITA expression is central to the absence of antigen presentation functions of trophoblast cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0198-8859(00)00159-2 | DOI Listing |
J Clin Invest
January 2025
Department of Biochemistry and Molecular Genetics and.
Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFbioRxiv
December 2024
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
Regulatory T cells (T cells) play a critical role in suppressing anti-tumor immunity, often resulting in unfavorable clinical outcomes across numerous cancers. However, systemic T depletion, while augmenting anti-tumor responses, also triggers detrimental autoimmune disorders. Thus, dissecting the mechanisms by which T cells navigate and exert their functions within the tumor microenvironment (TME) is pivotal for devising innovative T-centric cancer therapies.
View Article and Find Full Text PDFHaematologica
December 2024
Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen.
Arthritis Rheumatol
December 2024
Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
Objective: Idiopathic inflammatory myopathies (myositis, IIMs) are rare, systemic autoimmune disorders that lead to muscle inflammation, weakness, and extra-muscular manifestations, with a strong genetic component influencing disease development and progression. Previous genome-wide association studies identified loci associated with IIMs. In this study, we imputed data from two prior genome-wide myositis studies and analyzed the largest myositis dataset to date to identify novel risk loci and susceptibility genes associated with IIMs and its clinical subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!