Glucomannan, a viscous polysaccharide, and chitosan, a derivative of chitin, have both been demonstrated to lower cholesterol in animals. However, the mechanism of cholesterol lowering has not been established for either material. This study was conducted to determine the effect of glucomannan (G), chitosan (CH), or an equal mixture of the two (G + CH) on cholesterol absorption and fat and bile acid excretion. Rats were fed a modified AIN-93G diet for 18 d containing 0.125 g/100 g cholesterol and initially 10 g/100 g of the test materials or cellulose (C) as the control. However, the concentration of test materials and cellulose was reduced to 7.5 g/100 g after 1 wk due to lower weight gain compared with controls. Total liver cholesterol was significantly reduced in G, CH and G + CH groups compared with the C group. The intestinal contents supernatant viscosity of the C and the CH groups was negligible, whereas both G and G + CH produced high viscosities. Cholesterol absorption, measured by the fecal isotope ratio method, was significantly reduced from 37.5% in the C group to 20.2% in G, 18.2% in G + CH and 9.4% in CH. Daily fecal fat excretion did not differ between the C and G groups, but was significantly greater in G + CH and CH compared with the C and G groups. Daily fecal bile acid excretion was significantly greater in the CH and G + CH groups compared with the C and G groups. These results suggest that G lowered liver cholesterol by a viscosity-mediated interference of cholesterol absorption. In contrast, CH appears to lower cholesterol through a different mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/130.11.2753 | DOI Listing |
Life Metab
August 2024
Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2S2, Canada.
J Cell Mol Med
January 2025
Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
Due to the growing concern about diabetes worldwide, we investigated the antidiabetic potential of Lactobacillus plantarum DMR14, assessing its effects on the diabetic mice and identifying safe, bioactive compounds targeting DPP4 protein for drug development through various methods, including in vivo assays, GC-MS analysis and molecular docking simulations. The animal experiments showed that after 3 weeks of treatment, the blood sugar levels of mice given the bacteria were reduced by 35.03% compared to baseline.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Division of Bio-Analytical Chemistry, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!