There is a well-described projection from the retrohippocampus (subiculum and entorhinal cortex) to the nucleus accumbens that is involved in the control of psychomotor behaviour, and is implicated in the aetiology of schizophrenia. Cortical abnormalities are widely reported in the brains of schizophrenic patients, but it is unclear whether they are the cause or consequence of those changes in subcortical systems that are treated with neuroleptic drugs. We have, therefore, conducted a series of microdialysis experiments in anaesthetized rats to determine whether infusion of the excitotoxin, N-methyl-D-aspartate, into the retrohippocampus increases mesolimbic dopamine release. We found a clear and reproducible increase in extracellular dopamine in the nucleus accumbens following N-methyl-D-aspartate (2.5 microg), that was abolished when we sectioned the fimbria-fornix. Furthermore, inhibition of gamma-aminobutyric acid receptors following retrohippocampus administration of bicuculline (4 microg), also increased dopamine in the nucleus accumbens. The dopamine response to bicuculline was accompanied by an increase in dopamine metabolism, was long lasting, and also reduced by fornix section.The response to both N-methyl-D-aspartate and bicuculline depends on the integrity of the projection from the retrohippocampus to the nucleus accumbens. The results provide an underlying mechanism whereby a primary insult in the temporal cortex, caused by excessive N-methyl-D-aspartate receptor stimulation, can produce a hyperdopaminergic state. In addition, an increase in subiculo-accumbens activity evoked by bicuculline may also explain why patients with limbic epilepsy can develop a psychosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-2999(00)00741-xDOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
20
dopamine release
8
projection retrohippocampus
8
dopamine nucleus
8
dopamine
6
nucleus
5
accumbens
5
activation retrohippocampal
4
retrohippocampal region
4
region rat
4

Similar Publications

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex.

Metabolites

January 2025

Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Background: There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown.

Methods: For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models.

View Article and Find Full Text PDF

Impact of Exercise on Tramadol-Conditioned Place Preference.

Brain Sci

January 2025

Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan.

Background: Tramadol (TRA) is an opioid that is used to manage moderate to severe pain. Long-term use of TRA can lead to the development of opioid use disorder.

Objectives: This study investigates the role of forced exercise in reducing TRA-seeking behavior.

View Article and Find Full Text PDF

Role of Hypothalamus in Acupuncture's Effects.

Brain Sci

January 2025

Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.

The significant correlation between ancient medicinal practices and brain function marks a revolutionary frontier in the field of neuroscience. Acupuncture, a traditional oriental medicine, can affect brain regions, such as the hypothalamus, anterior cingulate, posterior cingulate, and hippocampus, and produces specific therapeutic effects, such as pain relief, suppression of hypertension, and alleviation of drug addiction. Among the brain regions, the hypothalamus, a small yet critical region in the brain, plays a pivotal role in maintaining homeostasis by regulating a wide array of physiological processes, including stress responses, energy balance, and pain modulation.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!